DTAPI

|Overview and Data Formats

REFERENCE

Apr 2025

Jeklec

DTAPI Manual
Overview and data formats

deklec

Table of Contents

1. General Descriptionccceveeiiiiiiiiiiiinnnnennns 4
1.7. What is DTAPIZ ..o 4
1.2. Documentation OVErviewcceeeeeeeeeeeeeeeennen... 4
1.3. DTAPI Object Model......ccovveeiiiiiiieeeeiiiiiiieeeene 4
1.4. List of Abbreviations and Glossary of Terms......... 5
1.5. Referencescooeeeviiiiieeeeeeiiiiieee e 6
2. Using DTAPI in your Project........cccoeevvnvennnnnn. 7
2.1. DTAPI on the Windows Platform...........ccccccveene. 7
2.2. Using the Static Link Librarycccocooviiieiiiinnniin. 7
2.3. Using the .NET Assemblyccccoeeeeieiiiiinnnnnnnn. 8
2.4. DTAPI on the Linux Platform.........ccooeiiieniiinenn, 8
3. DTAPI BASICS ..evveiivieieiiiieneeiiiieeeetiiieeeeeiie e 9
3.1. Attaching to a Devicecuvvvvieeeeeeiiiiiiiieeeeeeees 9
3.2. Attaching to a Channel.......cccccceeveeviiiiiiieeee. 10
3.3. Initialising a Channelccccveeviieeiiiiiieeeeee, 10
3.4. Receiving Data.....coouveiiiiiiiiiiiiiiecceee e 10
3.5. Transmitting Datacoeeiiiiiiiiiiiii 11
3.6. Example Code for a Simple Stream Player......... 12
4. Capabilities and I/O Configuration 14
4.7, Introductionooeeeiiiiiiie i 14
4.2, Capabilitiescooveveiiiiieeiiiiiiiee e 14
4.2.1.1/0O Capability Groupsccceeeveeieeeiiieeeeee. 15
4.2.2. Standard Capability Groupsceeevvveeennnee. 15
4.3. 1/0O Configurationccceveieeeeiiiienieeeen 16
4.3.1. SetloConfig and GetloConfig.........ccevuveeennnee. 16
4.3.2. Relation to Capabilities.........ccceveueeeenieeennnee. 16
4.3.3. SetloConfig Variants..........ccceeeeerieeeeniieeeenne. 16
5. DTAPI Concepts .cc.uuveeeivueneeiiinneeeiiieeeeeiiiee 18
5.1. Getting StOHSHCS ...uuuiiii 18
5.2. Transmit on Timestampcoevviiiiiiiieae. 18
5.3. SDI Genlock Supportcccceeviiieeieeiiiiiiiieeeeen, 19

5.4. Vital Product Data (VPD) ... 20
6. MUlti-PLP EXtensions............cceevvvvvniieenneennnns 21
6.7, LICENSING - 21
6.2. Multi-PLP Object Model........ccoeveiiiiiiiiiiiieeiis 21
6.3. Attaching to a Multi-PLP Modulator.................... 22
6.4. Virtual Channels........coooeeviiiiiieeiiiiiiee e, 22
6.5. Streaming MPLP Data ... 22
6.6. Complete Examplecccevvvveeieeeiiiiiiiieeeeeees 24
7. Advanced Demodulator API......................... 31
7.0, Introduchion......ceee e 31
7.2. Streaming Modeloovviiviiiiiiiiiiiiiiiiiiiiiiiiias 31
7.3. LICENSING .cciiiiiiiiiieeeee e 31
7.4. Advanced Demodulator Object Model............... 32
7.5. Attaching to an Advanced Demodulator 32
7.6. Virtual Input Channel — User-Supplied I/Q Samples
.. 32
7.7. Receiving PLP Data and Constellation poins....... 33
7.8. Retrieving STOHSHCS ..uuevvveeeeeeiiiiiiiiceceeeee 35
7.9. Set Generic Demodulation Parameters 35
8.SDIoverIP...cccoeeieiiiiiiiiceeee e 36
8. 1. OVEIVIEW . 36
8.2. Using SDI-over-IP with DTAPIc.ovveiieeennnnn. 36
8.3. SDI Transmituueeeeii e 37
8.4. SDI RECEIVE ... 38
9. Definition of data formatscccceeeeeeen. 39
9.1. Generic Stream Encapsulation (GSE) Packet....... 39
9.2. L.3 Baseband Frame.........ccceeveeeiieiiiiiieeeeeees 40
9.3. SDI = 10-bit Format......cccvvvveiiieeiiiiiiiieee e, 43
9.4. SDI — 8-bit Formatccccvvviiiieeeeiiiiiiieeee e 44
9.5. SDI — Huffman-Compressed...........ccccceevniuernne. 45
9.6. Transparent Modeccceeeiiiiiieiiiiieeeee, 47
9.7. Transmit on Timestampcccceeeiiiiiiieee 48

Copyright © 2025 by DekTec Digital Video B.V.

DekTec Digital Video B.V. reserves the right to change products or specifications without notice.
Information furnished in this document is believed to be accurate and reliable, but DekTec assumes
no responsibility for any errors that may appear in this material.

DTAPI Manual
Overview and data formats .E n m

1. General Description

1.1. What is DTAPI?

DTAPI is an acronym for DekTec Application Programming Interface, an API for controlling DekTec
PC add-on hardware (PCle cards and USB devices) and reading and writing data to it. DTAPI is part
of the DekTec SDK, which also contains device drivers, documentation, example code, etc.

DTAPI enables application programs to access the functions of DekTec devices at a higher level of
abstraction than would be possible using direct device-driver calls. Nonetheless, it allows efficient
access to nearly all hardware features.

From a technical point of view, DTAPI is a C++ library with an object-oriented interface that links to
a user application. The DTAPI library uses three device drivers (Dta, Dtu, DtaNw,) for accessing the
hardware: bta handles PCl and PCl express cards, btu handles USB-2 and USB-3 devices and DtaNw
is the network driver for IP-enabled devices. An auxiliary service (on Windows) or daemon (on Linux)
is running to provide services that should run continuously or that span multiple applications. Collec-
tively, DTAPI, the device drivers, the DTAPI service and the documentation are called the DekTec SDK.
lt's availoble as “Windows SDK” for Windows XP onwards and as “Linux SDK” for Linux 2.6 onwards.

From a programmer’s point of view, DTAPI is composed of a header file (DTAPI . h), to be included in
the application’s source code, and a library file, to be linked to the application’s executable. DTAPI is
also available as .NET assembly.

1.2. Documentation Overview

The table below shows the documents describing DTAPI.

Document Description

DTAPI Reference — Overview and Data Formats This document. Overview of DTAPI and definition
of data formats.

DTAPI Reference — Core Classes Reference for the core classes and methods in
DTAPI, mainly the device and channel classes.

DTAPI Reference — Advanced Demodulator API Reference for the advanced demodulator classes
and structures in DTAPI.

DTAPI Reference — DekTec Matrix API Reference for real-time processing of uncom-
pressed audio and video with the DekTec Matrix
API (part of DTAPI).

DTAPI Reference — Encoder Control Reference of the DTAPI classes for controlling au-
dio- and video encoding hardware.

DTAPI Reference — Multi-PLP Extensions Reference for the multi-PLP ATSC 3.0, DVB-C2,
DVB-T2 and ISDB-Tmm modulator classes in
DTAPI.

DekTec SDK - Revision History List of changes for each release of the Win-

dows/Linux SDK since the May2012 SDK release.

1.3. DTAPI Object Model

DTAPI consists of a collection of C++ classes. Some classes represent hardware functions, others
represent control parameters. The hardware is controlled and managed by invoking methods on
DTAPI objects. The core classes of DTAPI are DtDevice, DtInpChannel and DtOutpChannel.

DTAPI Manual
Overview and data formats .E n m

A DekTec device is represented by a DtDevice object. An application that wants to interact with a
device first ‘aftaches’ a DtDevice object to the hardware. To build an inventory of DekTec devices in
the system, the btDevice class is supplemented by a global function ptapibeviceScan.

Figure 1 illustrates DTAPI in action. The application interacts with DTAPI objects, which in turn com-
municate with the hardware through a device driver.

Streaming Streaming
gvrD ouT IN JveD OouT IN
— 1 — 1
DtDevicell TsInpChannel DtDevicellH TslnpChannel

\X4

TsOutpChannel : TsOutpChannel :

WDM Device WDM Device

Figure 1. Example of DTAPI objects representing two devices.

The 1/O ports on a device are represented by channel objects. Two channel classes are defined:
DtInpChannel for representing an input port and DtoutpChannel for an output port. A network (IP)
port is a special case: a channel object is instantiated for each logical stream. An application attaches
a channel object to an 1/O port by specifying a Dtbevice object and a port number. The core methods
of the channel classes are DtInpChannel::Read for reading data from an input port and
DtOutpChannel: :Write for streaming data to an output port.

1.4. List of Abbreviations and Glossary of Terms

bit string — Sequence of bits. Bit strings are written as a string of 1s and Os within single quote marks,
e.g. ‘1000 0001’. Blanks within a bit string are for ease of reading and have no significance.

bslbf — Bit string, left bit first. Used in bit stream definitions. “Left” refers to the order in which bit strings
are written in this document. “First” refers to the first bit transmitted or received. For example, in ‘1000’
the first bit fransmitted or received is a ‘1’.

channel object — Instance of a C+ + class that represents a physical input or output stream. A user
application streams data in or out of an I/O port by invoking methods on the channel object.

device object - Instance of a C++ class that represents a DekTec device.
DTA-xxx card — Any DekTec PCI or PCIl Express card in the DTA series.

Dta — Name of the device driver for DekTec PCI or PCI Express cards. This device driver is generic: a
single device driver is used for all PCl devices (instead of using one device driver for each device type).

DTAPI - DekTec Application Programming Interface.

DTAPI Manual
Overview and data formats .E n m

Dtu — Name of the device driver for DekTec USB devices. This device driver is generic: a single device
driver is used for all USB devices (instead of using one device driver for each device type).

vimsbf — Unsigned integer, most significant bit first.

VPD - Vital Product Data. Information stored in a PCI device to uniquely identify the hardware and,
potentially, software elements of the device. DekTec devices store VPD in on-board serial EEPROMs.
DTAPI supports methods to read and write VPD items.

1.5. References

- ISO/IEC 13818-1, Information technology — Generic coding of moving pictures and associated au-
dio information: Systems, also known as “MPEG-2 Systems” — Specification of the structure of a
MPEG-2 Transport Stream.

- Recommendation ITU-R BT.656-4. Interfaces for digital component video signals in 525-line and
625-line television systems operating at the 4:2:2 level of recommendation ITU-R BT.601 (Part A).

- ETSIEN 302 769, Digital Video Broadcasting (DVB); Frame structure channel coding and modulation
for a second generation transmission system for cable systems (DVB-C2).

- ETSIEN 302 755, Digital Video Broadcasting (DVB); Frame structure channel coding and modulation
for a second generation digital terrestrial television broadcasting system (DVB-T2).

- ETSI EN 102 773, Digital Video Broadcasting (DVB); Modulator Interface (T2-Ml) for a second gen-
eration digital terrestrial television broadcasting system (DVB-T2).

DTAPI Manual
Overview and data formats .E n m

2. Using DTAPI in your Project
This section describes how to use DTAPI on Windows (§2.1) and on Linux (§2.4).

2.1. DTAPI on the Windows Platform

DTAPI for Windows is available as a static link library and as .NET 4.0 assembly. All DTAPI declara-
tions and definitions are contained in a single C++ header file: DTAPI.h. Each module that uses
DTAPI functionality has to include this file.

2.2. Using the Static Link Library

The static link libraries are available for VC14 (Visual Studio 2015), VC15 (Visual Studio 2017), VC16
(Visual Studio 2019) and VC17 (Visual Studio 2022). For each compiler platform, eight versions of
the library are available.

Library File #bits Run-Time Library Configuration
DTAPIMD.lib 32 multi-threaded DLL (/MD) release
DTAPIMDd.lib 32 multi-threaded DLL (/MD) debug
DTAPIMT.lib 32 multi-threaded (/MT) release
DTAPIMTd.lib 32 multi-threaded (/MT) debug
DTAPI64MD.lib 64 multi-threaded DLL (/MD) release
DTAPI64MDd.lib 64 multi-threaded DLL (/MD) debug
DTAPI64MT.lib 64 multi-threaded (/MT) release
DTAPI64MTd.lib 64 multi-threaded (/MT) debug

The correct version of the DTAPI library is automatically linked to the application. This is accomplished
with pragma directives in DTAPI . h, e.g. “#pragma comment (1lib, "DTAPI64MDd.lib")", embedded
in #ifdef statements.

Automatic linking can be disabled by defining _DTAPI_DISABLE AUTO_LINK in your source code with
a #define before including DTAPI . h. Alternatively, you can define this constant in the Configuration
Properties in the C+ +, Preprocessor Definitions section.

So, to use the static link library of the DTAPI follow these steps:

1. Copy DTAPI.h and the right version(s) of DTAPIxxx.1ib to your project or to a standard location
visible to VC++.

2. Add “#include “DTAPI.h" to each file that uses DTAPI constants and/or functions.
3. Compile your application using compiler settings that match those of the lib file.

Instead of the manual copy it also possible to use a search path to look for the pTapPI.h and
DTAPIXX.1lib files in the WinSDK installation directory, which is typically:

C:\Program Files\DekTec\SDKs\WinSDK\DTAPI

DTAPI Manual
Overview and data formats .E n m

For Visual Studio the WinSDK installer adds two convenience macros':

$(DtapilncludePath), pointing to <installdir>/DTAPI/Include

$(DtapilLibraryPath), pointing to <installdir>/DTAPI/Lib

You can use these convenience macros to update the search path in your project settings:

Add $(DtapilncludePath) to the “Additional Include Directories” in the “C/C++ General”
settings section.

Add $(DtapiLibraryPath)\VC16 to the “Additional Library Directories” in the “Linker Gen-
eral” settings section.

NOTE: add \VC16 to the end of $(DtapilibraryPath) for VS.2019 projects, \VC17 for VS.2022 pro-
jects, etc., to link with the correct version of the DTAPI library.

2.3. Using the .NET Assembly

DTAPINET.d1ll and DTAPINET64.d11 are .NET 4.0 compatible assemblies of DTAPI. To use it you
should perform the following steps:

1.
2.

Make sure the .NET 4.0 SDK has been installed on your system.

Copy DTAPINET.d11 to your project or to a standard location visible to VC# (or other .NET
IDE).

Add a reference to the DTAPINET.d11 assembly to your project.

Add a “#using DTAPINET” statement to the beginning of each source file that uses the classes,
methods, and or constants exported by the DTAPINET assembly.

2.4. DTAPI on the Linux Platform
Using DTAPI in a Linux application is straightforward:

1.

2
3.
4

The

Make sure that DTAPI.h and DTAPI. o are located in a path reachable from your project.
Add “#include DTAPI.h" to each file using DTAPI.

Link the DTAPI . o library file to your application.

DTAPI requires the pthread library, so link this library to your application too.

DTAPI library file is available for different GCC versions. Please refer to the

../LinuxSDK/DTAPI/Bin/ directory.

1

For a multi user PC development environment each user should initially do an installation of the WinSDK to make sure

that the convenience macros are installed for each user.

DTAPI Manual
Overview and data formats .E n m

3. DTAPI Basics

3.1. Attaching to a Device

Programs that use DTAPI first must instantiate a DtDevice object and “attach” it to a hardware device.
This can be accomplished in several ways.

DtDevice: :AttachToType is convenient when the DekTec device type number is known, and the sys-
tem contains a single adapter of the given type.

DtDevice Dvc;
if (Dvc.AttachToType (2145) != DTAPI_OK)
// No DTA-2145 in the system ...

Figure 2. Aftaching a DtDevice object to the hardware based on type number.

DtDevice: :AttachToSerial can be used if the serial number of the device is known.

DtDevice Dvc;
if (Dvc.AttachToSerial (2145000123) !'= DTAPI_OK)
// No card with serial# 2145000123

Figure 3. Attaching a DtDevice object to the hardware based on serial number.

DtDevice: :AttachToSlot can be used if the physical location of a PCl or PCl Express card in the
system is known.

DtDevice Dvc;
if (Dvc.AttachToSlot(l, 3) != DTAPI_OK)
// No card in slot 3 on PCI bus 1

Figure 4. Attaching o DtDevice object to the hardware based on PCl bus and slot number.

For DTEs (e.g. DTE-3100) in DTAPI mode, DtDevice: :AttachToIpAddr can be used:

DtDevice Dvc;
unsigned char IpAddr[4] = { 192, 168, 23, 114 };
if (Dvc.AttachToIpAddr (IpAddr) !'= DTAPI_OK)

// No DTE found at 192.168.23.114

Figure 5. Attaching a DtDevice object to the hardware based on IP address.

A more sophisticated application creates an inventory of DekTec devices, with global function
DtapiHwFuncScan or DtapiDeviceScan, and lets the user configure which device is to be used.

DtHwFuncDesc HwFuncs[10];
int £, NumberOfHwFuncs;
: :DtapiHwFuncScan (10, NumberOfHwFuncs, HwFuncs);

for (£=0; f<NumberOfHwFuncs; f++)
if (HwFuncs[f].m ChanType & DTAPI_CHAN OUTPUT)
break;

if (f == NumberOfHwFuncs) { // No output card }

DtDevice Dvc;
Dvc.AttachToSerial (HwFuncs[£f] .m_DvcDesc.m_Serial);

Figure 6. Attaching to the first device with an output port.

After all operations have been completed, the Dtbevice object may be detached from the hardware
with method pDetach.

DTAPI Manual
Overview and data formats .E n m

3.2. Attaching to a Channel

Before you can stream data into or out of a DekTec device, two objects must have been instantiated
and attached to the hardware:
¢ A DtDevice object (§3.1);
¢ A channel object: btInpcChannel for streaming data from an input port into your application,
or DtOutpChannel for streaming data to an output port.

The channel object is attached to the hardware with the channel’s attachToPort member function.
The first parameter of this function is a pointer to the Dtbevice object that hosts the channel. The
second parameter identifies the port number.

DtDevice Dvc;
// Code to attach to the device hardware goes here

DtOutpChannel Outp;
if (Outp.AttachToPort(&Dvc, 1) != DTAPI_OK)
// Error-handling code

DtInpChannel Inp;
if (Inp.AttachToPort(&Dvc, 2) !'= DTAPI_OK)
// Error-handling code

Figure 7. Attaching o DtOutpChannel and a DtInpChannel object to the hardware.

Just like device objects, DtoutpChannel and DtInpChannel objects should be detached from the hard-
ware after all operations on the channel have been completed.

3.3. Initialising a Channel

After attaching to the hardware, and before streaming can commence, the channel must be initialized.

Port type Channel object Initialization

DVB-ASl input |DtInpChannel |SetRxMode sets the packet size of packets stored in the re-
ceive FIFO.

DVB-ASI output |DtOutpChannel |SetTsRateBps sets the output bit rate.
SetTxMode sets the packet size and burst- or continuous
mode.

IP input DtInpChannel |SetIpPars sets the IP reception parameters, primarily the
IP source address.

SetRxMode sets the packet size of packets stored in the re-
ceive FIFO.

IP output DtOutpChannel |SetIpPars sets the IP transmission parameters, primarily
the IP destination address.

SetTsRateBps sets the output bit rate.

SetTxMode sets the packet size and burst- or continuous
mode.

3.4. Receiving Data

This section considers the actual reception of data (usually a Transport Stream) from an external source
to your application. The core of an elementary reception program is shown in Figure 8. This code
assumes the following:

DTAPI Manual
Overview and data formats .E n m

¢ Device object bve and channel object Inp have been attached to the hardware.
e The receive FIFO is empty and receive mode has been initialized.
e ProcessData(DataBuffer, NumBytes) is the function that processes the data.

e StopCondition() is a user-supplied function to break out of the reception loop.

// PRE-CONDITION: Dvc and Inp have been attached to the hardware
char DataBuffer [BUFSIZE];

// Signal the hardware to start receiving data into the receive FIFO
Inp.SetRxControl (DTAPI_RXCTRL RCV) ;

// Main loop

while (!StopCondition())

{
Inp.Read (DataBuffer, BUFSIZE) ;
ProcessData (DataBuffer, BUFSIZE) ;

}

Figure 8. Minimal program for receiving data from an external data source.

The code is straightforward. First receive mode is set to ‘Receive’ (DTAPI_RXCTRL_RcV), which instructs
the hardware to start storing data in the receive FIFO. In the main loop, Inp.Read sleeps until BUFS1ZE
bytes are received. The main loop alternates between reading data and processing the data, until the
stop condition becomes true.

The following factors should be considered to achieve optimal results:

- The buffer size (constant Burs1zg) should not be chosen too small. Every data transfer from the
receive FIFO to the buffer in host memory incurs non-negligible overhead for setting up a DMA
transfer.

A reasonable minimum buffer/transfer size is 4096 bytes. No maximum size exists; the buffer size
may very well be a few megabytes.

- The number of bytes returned by method Read always is a multiple of 4. It is not guaranteed that
the data aligns to Transport-Packet boundaries, even if the buffer size is a multiple of the packet
size. The processing software should always start with a synchronization stage.

- If using SDI, the ReadFrame function can be used instead of the Read function to read the complete
SDI frame at ones. The BUFSIZE must be the size of a complete SDI frame.

3.5. Transmitting Data

Transmitting data to an output is somewhat more involved than receiving data. The core of a minimal
program that transmits data is shown in Figure 9. The code assumes the following:

- Device object bve and channel object outp have been attached to the hardware.
- The transmission parameters have been initialized.

- GetData(DataBuffer, NumBytes) is the function that generates data bytes to be transmitted.

DTAPI Manual
Overview and data formats

deklec

The first part of the code builds an initial load in the transmit FIFO before actual transmission begins.
Hereto transmission control is set to HOLD, which enables DMA to the fransmit FIFO on the device but

keeps transmission disabled.

// PRE-CONDITION: Dvc and Outp have been attached to the hardware
// Transmission parameters have been initialized

// Build initial load in transmit FIFO
Outp.SethControl(DTAPI_TXCTRL_ﬂOLD); // Start in HOLD mode
char DataBuffer [BUFSIZE] ;
for (int Load=0; Load<INITIAL LOAD; Load+=BUFSIZE)
{

GetData (DataBuffer, BUFSIZE) ;

Outp.Write (DataBuffer, BUFSIZE) ;
}

// Go to SEND mode: this starts the transmission of data
Outp.SetTxControl (DTAPI_TXCTRL_SEND) ;

// Main loop

while (!StopCondition())

{
Outp.Write (DataBuffer, BUFSIZE) ;
GetData (DataBuffer, BUFSIZE) ;

}

Figure 9. Minimal program to transmit data.

When the transmit FIFO contains its initial load, actual transmission is started by setting transmission

control to SEND. The main loop then supplies additional data to the transmit FIFO.

The following factors should be considered to achieve optimal results:

- The buffer size (constant Burs1zE) should not be chosen too small. Every data transfer to the trans-

mit FIFO incurs overhead for setting up a DMA transfer.

- The initial load written to the transmit FIFO (IN1TIAL_LOAD) should not be too small either, to
prevent an early underflow of the transmit FIFO in the main loop. A value close to the maximum

FIFO size is recommended.

The initial load cannot be larger than the size of the transmit FIFO: this would cause an application

|II

“stall”, because outp.wWrite will sleep forever.

3.6. Example Code for a Simple Stream Player

Figure 10 shows the code of a simple but fully functional command-line stream player that is capable
of transmitting a TS file to DVB-ASI output port #1 of a DTA-2145. The filename and bit rate at which

to play out the file can be specified as command-line arguments.

The example exploits good-old “stdio” functions for reading file data. By using a relatively large buffer,

performance is more than adequate.

Obviously, this example is just a first step towards a production-quality streamer application. With
respect to DTAPI, one obvious improvement would be to check the return code for every DTAPI call

and add the corresponding error-handling code.

DTAPI Manual
Overview and data formats

deklec

{

// Command-line program TsOut to transmit a TS file out of a DTA-2145

#define BUFSIZE 0x10000 // 64kB buffer size
#define INITIAL LOAD (7*%1024%1024) // 7MB initial load

#include “DTAPI.h”
#include <stdio.h>

int main(int argc, char* argv[])

if (argc !'= 3) {
printf (“Usage: TsOut bitrate tsfile\nQuitting...\n”);
return -1;
}
FILE* fp = fopen(argv([2], “rb”);
if (fp == NULL) {
printf(“Can’t open ‘%s’ for read\nQuitting...\n”, argv[2]);
return -2;
}
// Attach device and output channel objects to hardware
DtDevice Dvc;
if (Dvc.AttachToType (2145) != DTAPI_OK) {
printf (“No DTA-2145 in system. Quitting...\n”);
return -3;
}
DtOutpChannel TsOut;
if (TsOut.AttachToPort(&Dvc, 1) != DTAPI OK) {
printf (“Can’t attach output channel.\nQuitting...\n”);
return -4;
}
// Initialise bit rate and packet mode
TsOut.SetTsRateBps (atoi (argv[l])) ;
TsOut.SetTxMode (DTAPI_TXMODE 188, DTAPI_TXSTUFF_MODE ON) ;

// Build initial load in Transmit FIFO
TsOut.SetTxControl (DTAPI_TXCTRL HOLD) ;
char Buf[BUFSIZE];
int Load = 0;
int NumBytes = fread(Buf, 1, BUFSIZE, fp);
while (Load<INITIAL LOAD && NumBytes!=0) {
TsOut.Write (Buf, NumBytes) ;
Load += NumBytes;
NumBytes = fread(Buf, 1, BUFSIZE, £fp);

// Start transmission
TSOut.SethControl(DTAPI_TXCTRL_SEND);

// Main loop
while (NumBytes != 0) {

TsOut.Write (Buf, NumBytes) ;

NumBytes = fread(Buf, 1, BUFSIZE, £fp);
}

return O;

Figure 10. Complete command-line application to stream a file with the DTA-2145.

DTAPI Manual
Overview and data formats .E n m

4. Capabilities and 1/O Configuration

DTAPI supports mechanisms to discover the capabilities of DekTec I/O adapters programmatically
and configure the hardware dynamically.

4.1. Introduction
A DTAPI capability is a constant that identifies a characteristic or feature of a physical port. For exam-
ple, bTAP_cap asI indicates that a port supports ASI.

e DTAP_CAP_ASI doesn’t say whether ASI reception and/or ASI transmission are supported, other capabilities are
used for that.

The global DTAPI function : :DtapiHwFuncScan scans the hardware and creates a hardware function
descriptor (DtHwFuncDesc) for each port. Capabilities are encoded in member m Flags of data type
Dtcaps. Capabilities can be OR-ed together.

Use the following code snippet to test for a certain capability:

if ((HwFuncDesc.m Flags & DTAPI_CAP ASI) != 0)

{
// Port supports ASI

}

Figure 11. Code to test whether a port has capability DTAPI_CAP_AST.

I/O configuration is the process to dynamically configure 1/O ports from software. You can use the
SetIoConfig method to set the I/O configuration of a port, and GetIoconfig to read it back.

4.2. Capabilities

Capabilities are organized in groups, capabilities and sub-capabilities.

Capability Group A set of capabilities applying to comparable characteristics.
For example, capabilities in group 10sTD all apply to the I/O stand-
ards supported by a physical port.

Capability A constant that identifies a characteristic of a port.
For example, DTAPI_cap HDSDI, a member of group 10STD, indicates
that the port supports HD-SDI.

Sub-Capability A constant that identifies a sub-characteristic of a port.
For example, sub-capabilities of bTaAPI_cap_HDSDI include
DTAPI_CAP 1080150, DTAPI_CAP 1080I59 94, efc.

The DekTec SDK contains the following documentation on capabilities.

Caplist.xlsx A spreadsheet that lists the capabilities, sub-capabilities and attributes
supported by each DekTec I/O adapter.

DTAPI.h This header file contains a complete list of all available capabilities in
the form of pTAPI_caP_xxx definitions.

DTAPI Manual

Overview and data formats

deklec

There are two main categories of capabilities: I/O capabilities and standard capabilities.

I/O Capability

Capability that is linked to I/O configuration: If an /O capability is
supported, SetIoConfig can be used to enable the port feature.

Standard Capability |These capabilities indicate whether a certain function is sup-ported by

the port and are unrelated to 1/O configuration.

4.2.1.1/0O Capability Groups

I/O capabilities describe features of physical 1/O ports. The main 1/O capability groups are listed in
the table below. Capabilities in group BooLIO are present, or not. Capabilities in the other 1/O capa-

bility groups are mutually exclusive: only one of them can be active at a time.

Group Description

BOOLIO Boolean 1/O capabilities that, if present, indicate that a feature is sup-
ported. Capabilities in this group include FAILSAFE, FRACMODE, GENLOCKED,
GENREF and SWS2APSK.

IODIR The direction of the signal flow: INPUT, OUTPUT or DISABLED. The sub capa-
bilities in this group indicate how a physical port is connected to the input
or output channel. This encodes features like double buffering.

IOSTD The 1/O standard used on this port. Capabilities in this group include:
3GSDI, ASI, DEMOD, GPSTIME, HDSDI, IP, MOD, PHASENOISE, SDI and SPI.

PWRMODE High-quality modulation (MoDHQ) or low-power mode (LOWPWR).

RFCLKSEL Modulator RF clock - Selection of reference source: internal (REXCLKINT) or
external (REXCLKEXT).

TSRATESEL Capabilities in this group selects between ways to generate the transport-
stream rate: EXTTSRATE, EXTRATIO, INTTSRATE Or LOCK2INP.

For a complete list of I/O capabilities, please refer to caprList.xlsx.

4.2.2. Standard Capability Groups

The main standard capability groups are listed in the table below.

Group Description

DEMODPROPS General demodulator properties: ANTPWR (antenna power), LNB and RX_ADV
(advanced demodulation).

FREQBAND Frequency band supported: LBAND, VHF, UHF.

IOPROPS Miscellaneous capabilities that do not fit elsewhere, e.g. TRPMODE (transpar-
ent mode)

MODSTD Modulation standards, all starting with Tx_: Tx aTsc, TX_DVBT2, efc.

MODPROPS Other capabilities related to modulation, e.g. cM (channel simulation).

RXSTD Receiver standards, all starting with RX_: RX_ATSc, Rx_DVBT2, etc.

For a complete list of standard capabilities, please refer to capList.xlsx.

DTAPI Manual
Overview and data formats .E n m

4.3. 1/0 Configuration

4.3.1. SetloConfig and GetloConfig
Use the setIoConfig to set the I/O configuration of a port, and GetIoconfig to read it back.

On Windows, I/O configuration settings are persisted in the registry. After a power down and a reboot,
the 1/O configurations will be automatically restored to the last-applied settings.

On Linux, no such mechanism exists and the application itself is responsible for configuring the ports.
Example

On many DekTec adapters, ports can be configured in ASI or in SDI mode. The code below configures
a port in ASI mode:

if ((HwFuncDesc.m Flags & DTAPI_CAP_ASI) != 0)
Dvc.SetIoConfig(Port, DTAPI_IOCONFIG_IOSTD, DTAPI_IOCONFIG ASTI) ;

Figure 12. Code to set the I/O configuration of a port to ASI.

4.3.2. Relation to Capabilities

SetIoConfig and GetIoConfig have four parameters that are closely linked to capabilities:

Parameter Description
Port Physical port number.
Group Same as capability group.
Only I/O capabilities have a corresponding I/O configuration group.
Value Capability.
SubValue Sub-capability.
Example

An output port that can be configured in “double-buffered” mode (output signal available on two
ports) has capability pbTaPI_cap_ouTpuT and sub-capability DTaAPI_cap DBLBUF, both located in the
IODIR group.

Dvc.SetIoConfig(Port, DTAPI_IOCONFIG_IODIR, // Group
DTAPI_ IOCONFIG_OUTPUT, // Value
DTAPI_IOCONFIG_DBLBUF) ; // Subvalue

Figure 13. Code to configure a port for double-buffering.

For a complete list of I/O configuration groups, values and subvalues, see the bTAPI_I0CONIG XXX
constants in DTAPI.h

4.3.3. SetloConfig Variants

Two setIoConfig functions are defined, one at device level and one at channel level. The I/O con-
figuration of a port at device level can only be changed when the port is not used (no channel object
attached). Some, but not all, I/O configuration changes can also be performed at channel level. This
can only be done when the channel object is attached to the hardware.

In some cases, there are dependencies between 1/O ports on the same DekTec device. The driver
validates whether the 1/O configuration of multiple ports is consistent with each other. For example,

DTAPI Manual
Overview and data formats .E n m

on the DTA-2137 only one port can be set fo DTAPI_IOCONFIG_SWS2APSK, otherwise an error is re-
turned.

To simplify configuration changes that must be done in a specific order, and to prevent temporary
invalid configurations, a “transaction” variant of setIoConfig is available. With this variant the 1/0O
configuration settings only needs to be valid before and after the complete transaction, not after each
individual configuration action.

DTAPI Manual
Overview and data formats .E n m

5. DTAPI Concepts

5.1. Getting Statistics

DTAPI uses class Dtstatistic to represent measurements and statistics. This class is typically used
for receivers. A summary of its declaration is shown below. Refer to DTAPI . h for the full definition.

struct DtStatistic
{
DtStatistic();
DtStatistic(int StatisticId); // Constructor with DTAPI_STAT xxx initialization

enum StatValueType

{
STAT VT_UNDEFINED, STAT VT BOOL, STAT VT DOUBLE, STAT VT_INT

};

DTAPI_RESULT m Result; // Result of retrieving the statistic
int m _StatisticId; // Identifies the statistic: DTAPI_STAT XXX
StatValueType m ValueType; // Value type of statistic: STAT VT XXX
union {
bool m ValueBool; // Value if value type is STAT VT BOOL
double m ValueDouble; // Value if value type is STAT VT DOUBLE
int m Valuelnt; // Value if value type is STAT VT INT

};
DTAPI RESULT GetName(..), GetValue(..), SetId(..);
};

Statistics are identified by their ID (m_statisticId). See DTAPI.h for a list of DTAPI_STAT xxx identi-
fiers. The function GetName () returns both a full name and a short name of the statistic. The value of
the statistic can be retrieved with Getvalue ().

e If the type of a statistic is STAT_VT_INT, its value can be retrieved both as int and as double.

The following statistics functions are available:

Function Description

GetStatistic(int, intg) Return a single statistic.
GetStatistic(int, doubleg&)
GetStatistic(int, boolg)

GetStatistics(int, DtStatistic¥) Return an array of statistics.

GetSupportedStatistics(int&, DtStatistic*) |Returns all supported statistics on a port.

5.2. Transmit on Timestamp

‘Transmit on Timestamp' is a special transmission mode for ASI outputs to transmit transport packets
at user-defined times. This enables generation of a jittered stream, a feature that can be used to build
test generators that simulate actual network conditions.

The transmit-on-timestamp mode is enabled by including the pTAPI_TxMODE TXONTIME flag in the first
argument of the setTxMode method. Timestamps reference the 54-MHz system reference clock.

The data format of a transmit-on-timestamp stream is described in §9.7. Timestamps are stored in
little-endian format in 4 bytes that are located before each packet. The format is identical to that

DTAPI Manual
Overview and data formats .E n m

generated by an ASI receive channel in time-stamped mode. Timestamps are used only for timing of
the output stream; the timestamps itself are not transmitted.

It is important that the data in txontime_stream() is formatted correctly from the start. When the
stream is not aligned correctly, data in the stream may be interpreted as timestamp, potentially causing
long delays between transmission of packets. The device cannot automatically recover from this situ-
ation and a channel reset is required to resume synchronized operation.

The following limitations apply:

e Transmit on timestamp is not supported in raw mode (DTAPI_TXMODE_RAW);

¢ Null packet stuffing (DTAPI_TXSTUFF_MODE_ON) is not supported.

e In transmit-on-timestamp mode, the transmit channel will automatically operate in burst
mode, even if the DTAPI_TXMODE_BURST flag is not specified.

When starting transmission by setting transmit control o DTAPI_TXCTRL_SEND, the timestamp of the
first packet is stored as reference and the packet is sent out immediately. For all other packets, the
number of 54-MHz cycles relative to the timestamp of the first packet is computed, and the packets
are sent out the computed number of cycles after the first packet.

5.3. SDI Genlock Support

SDI I/O adapters with an on-board VCXO (DTA-145, DTA-2144 and DTA-2145) are capable of ‘SDI
genlock’. The SDI output(s) can be locked to an incoming SDI signal, such that the Start-of-Active-
Video (SAV) symbol is sent on the SDI output at virtually the same time as the SAV symbol is entering
the SDI input.

To genlock an SDI output, an application shall do the following:

1. Set the I/O configuration for port #1 to DTAPI_10CONFIG_GENREF and specify the video standard
the port should lock to. Once port #1 is configured as GENREF input, the driver will extract the
SDI timing from the SDI signal presented to the port.

2. Set the 1/O configuration for the output port to DTAPI_IOCONFIG_GENLOCKED.

3. Attach an output channel object to the output port and set TxMode to match the configured
reference video standard.

// Pre-condition: Dvc is attached to

// Configure port #l1 as genlock reference input for SDI625
Dvc.SetIoConfig(l, DTAPI_IOCONFIG_GENREF, DTA1XX GENLOCK_SDI625);

// Configure port #2 as genlocked output port
Dvc.SetIoConfig(2, DTAPI_IOCONFIG_GENLOCKED);

// Attach to port #2
DtOutp.AttachToPort (&DtDve, 2);

// Initialise channel to initial 'safe' state
DtOutp.SetTxControl (DTAPI_TXCTRL_ IDLE) ;

// Set the TxMode to SDI
DtOutp. SetTxMode (DTAPI_TXMODE SDI_FULL, DTAPI_TXSTUFF_MODE ON) ;
etc.

Figure 14. Configuring genlock.

DTAPI Manual
Overview and data formats .E n m

It is not necessary to attach to the genlock reference port. The application, or another application,
may still open the port as an input, with the limitation that port #1 must be operated in an SDI mode
that matches the configured reference video standard.

5.4. Vital Product Data (VPD)

Vital Product Data (VPD) is product identification information stored in an EEPROM on board of DekTec
devices. The read-only part of VPD is loaded in the manufacturing process. The read/write part is used
for licensing purposes and for storing customer-specific product information.

VPD is initialized as a collection of items, each identified by a keyword. Most keywords are 2-character
strings (e.g. “PD” for Production Date), with the exception of the VPD ID String, which is identified by
“VPDID".

Three member functions of DtDevice are defined to manipulate VPD:
- VpdRead — Read VPD-item, given a keyword.

- Vpdwrite — Write VPD-item, given a keyword and item string. If the item existed, the item string is
overwritten, unless the VPD item is read-only, in which case an error code is returned.

- Vpdpelete — Delete VPD item. Read-only VPD item cannot be deleted.

DTAPI Manual
Overview and data formats .E n m

6. Multi-PLP Extensions

Multi-PLP modulation is a specific DTAPI function that enables application programs to create single-
PLP and multi-PLP modulators for ATSC 3.0, DVB-C2, DVB-T2 and ISDB-Tmm. The classes and struc-
tures that are related to multi-PLP modulation are specified in the document DTAPI Reference — Multi-
PLP Extensions. The main DTAPI header file and library include the class definitions required for multi-
PLP modulation. This section describes the usage of these classes and structures.

6.1. Licensing

The multi-PLP classes require an aTsc 3.0 (DTC-386), a pve-c2 (DTC-379), a pve-T2 (DTC-378)),
an 1SpB-Tmm (DTC-382) or a Gorb license on the modulator card. If access to I/Q samples is required,
an additional 1 license (DTC-371) must be present.

6.2. Multi-PLP Object Model

The multi-PLP modulator is represented by a “Multi-PLP Modulator” object that is encapsulated by the
DtMplpOutpChannel class. When multi-PLP modulation parameters are set through a setModControl
method, multi-PLP modulation is enabled, and input FIFOs are created for each PLP source. Methods
are provided to write into the individual MPLP FIFOs and to control them. The DtMplpOutpChannel
object transfers the modulation results through the device driver to the device.

Application -

{

DtDevice 4|7 DtMplpOutpChannel

FIFO

Multi PLP
Modulator

Figure 15. Example of a DtDevice object and a DtMplpOutpChannel object encapsulating a
multi-PLP modulator.

In case single-PLP modulation parameters are set, only one FIFO is created and the multi-PLP modu-
lator acts as a single-PLP modulator.

DTAPI Manual
Overview and data formats .E n m

6.3. Attaching to a Multi-PLP Modulator

Using the DTAPI multi-PLP extensions is no different from using a standard modulator channel, except
that DtMplpoutpChannel is used instead of outpChannel. First, a DtDevice object has to be instanti-
ated and attached to the hardware, and then a DtMplpoutpChannel object has to be attached to the
device.

// Error-handling code has been omitted
DtDevice Dvc;

Dvc.AttachToSerial (2115123456) ;
DtMplpOutpChannel Outp;
Outp.AttachToPort (&Dve, 1);

Figure 16. Attaching a multi-PLP modulator channel to the hardware.

6.4. Virtual Channels

A standard output channel writes modulated 1/Q samples directly to the hardware. The DTAPI multi-
PLP extensions support a new type of channel, a virtual channel, enabling custom processing of the
multi-PLP modulator output. For example, the modulated |/Q samples can be written to a file.

A virtual channel can be created using the channel’s Attachvirtual member function. The first pa-
rameter of this function, a pointer to a DtDevice object, identifies the hardware device carrying the
licenses to enable the MPLP extensions. The second parameter specifies the callback function and the
third parameter an opaque pointer. When DTAPI has generated new output, the callback function is
invoked with the opaque pointer and I/Q samples as arguments

Example code to create a virtual channel is shown in Figure 17.

{
DtDevice Dvc;
// Code to attach to device goes here

DtMplpOutpChannel Outp;
if (Outp.AttachVirtual (&Dvc, ::WriteMySsmps, NULL) !'= DTAPI_OK)
{
// Error-handling code
}
etc.

}

bool WriteMySamps (void* pOpaque, void* pVirtOut)
{

// Code processing the generated data,

// e.g. writing to file
}

Figure 17. Attaching a DtMplpOutpChannel object to a virtual output.

To avoid memory leaks, a virtual DtMplpoutpChannel object shall be detached from the hardware
after all operations on the channel have been completed.

6.5. Streaming MPLP Data
The core of a multi-PLP modulator program is shown in Figure 18. The code assumes:
- DtDevice object Dve and DtMplpOutpChannel object outp have been attached to the hardware.

- Multi-PLP modulation parameters have been set.

DTAPI Manual
Overview and data formats .E n m

- GetTsData(i, Buf, Max) is the user-supplied function that writes maximally Max new Transport-
Stream data bytes in Bug for MPLP-FIFO/PLP index i, and returns the number of bytes written.

The transmission control is set to Hold, which enables multi-PLP modulation and DMA but keeps actual
transmission disabled.

// PRE: Dvc and Outp attached

// MPLP modulation parameters set
char Buf [BUFSIZE];

int NumBytes = 1;

int TxControl = DTAPI_TXCTRL HOLD;
Outp.SetTxControl (TxControl) ;

// Main loop
while (NumBytes != 0)
{
// Transmission in hold?
if (TxControl == DTAPI_?XCTRL_HOLD)
{
// Check whether initial load reached
int Load;
Outp.GetFifoLoad (Load) ;
if (Load >= INILOAD)
{
TxControl = DTAPI_TXCTRL SEND;
Outp.SetTxControl (TxControl) ;

}
}

// Try to £fill all input FIFOs
bool AllFifosFilled = true;
for (int i=0; i<NumInputs && NumBytes!=0; i++)
{

// MPLP FIFO (still) filled?

int NumFree;

Outp.GetMplpFifoFree (i, NumFree) ;

if (NumFree < BUFSIZE)

continue; // Yes; Next FIFO

AllFifosFilled = false;
NumBytes = GetTsData (i, Buf, BUFSIZE) ;
Outp.WriteMplp (i, Buf, NumBytes);

}

// All FIFOs filled?
if (AllFifosFilled)
Sleep (10) ; // Sleep for a while

Figure 18. Streaming data to an output.

When the Transmit FIFO contains its initial load, actual transmission can be started by setting trans-
mission control to send. The main loop then supplies additional data to the MPLP FIFOs until the data

sources are exhausted.
The following factors should be considered to achieve optimal results:

- Modulation of a frame is only possible when sufficient data is available for all PLPs. A lengthy
transfer to one MPLP FIFO may cause underflow of another MPLP FIFO, stalling the modulation
process. To prevent this, the transfer size should not be too large. For efficiency reasons, the transfer

23

DTAPI Manual
Overview and data formats .E n m

size should not be too small either. Therefore, it is recommended to use a transfer size between 4K
bytes and 32K bytes.

- The initial transmit-FIFO load (1n110AD) should not be too small, to prevent an early transmit-FIFO
underflow in the main loop. A value close to the maximum hardware FIFO size is recommended.
Warning: The initial load cannot be larger than the transmit-FIFO size: when the transmit FIFO is
full, DMA will stall and the application “hangs.”

- As far as DTAPI is concerned, the GetTspata function may return Transport-Stream data aligned
at arbitrary 4-byte boundaries. However, for many data-generating algorithms, alignment on
packet boundaries will be a natural choice. In such applications it is convenient and efficient to set
the buffer size to a multiple of the packet size.

6.6. Complete Example

Figure 19 shows the code of a simple DVB-T2 stream generator containing 2 data PLPs and a common
PLP.

DTAPI Manual
Overview and data formats

deklec

Obviously, this example is just a first step towards a production-quality stream generator application.

// Command-line program T2Sample

// Outputs DVB-T2 signal according to V&V402 through DTA-2115
#include “DTAPI.h”

#include <stdio.h>

int main(int argc, char* argv[])
{
char TempRdBuf[8192];
DTAPI RESULT dr;
DtDevice Dvc;
DtMplpOutpChannel Outp;

// Attach to the DTA-2115

dr = Dvc.AttachToType (2115) ;

if (dr !'= DTAPI_OK)
exit(dr);

// Use the modulator port
dr = Outp.AttachToPort(&Dvec, 1);
if (dr !'= DTAPI_OK)

exit(dr);

// Set RF frequency to 666MHz
dr = Outp.SetRfControl (666000000) ;
if (dr != DTAPI_OK)

exit(dr);

// Set RF level -20.0 dBm
dr = Outp.SetOutputLevel (-200) ;
if (dr !'= DTAPI_OK)

exit(dr);

// Set default DVB-T2 values
DtDvbT2Pars DvbT2Pars;

// Below you'll find the parameter settings corresponding to VV402
// General parameters

DvbT2Pars.m_$2Version = DTAPI_pVBTZ_VERSION_;_Z_l;
DvbT2Pars.m Bandwidth DTAPI_DVBT2 8MHZ;
DvbT2Pars.m_FftMode DTAPI_pVBTZ_FFT_32K;
DvbT2Pars.m_GuardInterval = DTAPI_pVBTZ_GI_l_lZB;

DvbT2Pars.m Miso DTAPI_DVBT2 MISO_OFF;
DvbT2Pars.m_Papr DTAPI_pVBTZ_PAPR;NONE;

DvbT2Pars.m BwtExt = true;
DvbT2Pars.m PilotPattern =17;
DvbT2Pars.m_L1Modulation = DTAPI_pVBTZ_BPSK;
DvbT2Pars.m Cellld =0;

DvbT2Pars.m NetworkId = 12421;
DvbT2Pars.m_T2SystemId = 32769;
DvbT2Pars.m LlRepetition = false;

// T2-Frame related parameters

DvbT2Pars.m NumT2Frames = 2;
DvbT2Pars .m NumDataSyms = 27;
DvbT2Pars.m NumSubslices = 108;
// No FEF

DvbT2Pars.m_FefEnable false;

25

DTAPI Manual
Overview and data

DvbT2Pars.
DvbT2Pars.
DvbT2Pars.

// 3 PLPs
DvbT2Pars.

// PLP[O]
DvbT2Pars.
DvbT2Pars.
DvbT2Pars.
DvbT2Pars.
DvbT2Pars.
DvbT2Pars.
DvbT2Pars.
DvbT2Pars.
DvbT2Pars.
DvbT2Pars.
DvbT2Pars.
DvbT2Pars.
DvbT2Pars.
DvbT2Pars.
DvbT2Pars.
DvbT2Pars.
DvbT2Pars.
DvbT2Pars.
DvbT2Pars.
DvbT2Pars.
DvbT2Pars
DvbT2Pars
DvbT2Pars
DvbT2Pars

// PLP[1]
DvbT2Pars
DvbT2Pars
DvbT2Pars
DvbT2Pars
DvbT2Pars
DvbT2Pars
DvbT2Pars
DvbT2Pars
DvbT2Pars
DvbT2Pars
DvbT2Pars
DvbT2Pars
DvbT2Pars
DvbT2Pars
DvbT2Pars
DvbT2Pars
DvbT2Pars
DvbT2Pars
DvbT2Pars
DvbT2Pars
DvbT2Pars
DvbT2Pars
DvbT2Pars.
DvbT2Pars.

// PLP[2]

.m_Plps[0] .m FfFlag
.m_Plps[0] .m FirstRfIdx
.m_Plps[0] .m NumBlocks
.m_Plps[0].m TsRate =

formats

// 1 RF channel

m_NumRfChans =1;
m_StartRfIdx
m_RfChanFreqgs[0]

666000000

m_NumPlps = 3;

First data PLP

m Plps[0].m Id =
m Plps[0] .m GroupId
m_Plps[0] .m_Type

m Plps[0] .m Modulation
m_Plps[0] .m CodeRate
m_Plps[0] .m_FecType

m _Plps[0] .m Hem
m_Plps[0] .m Npd
m_Plps[0].m_Issy
m_Plps[0].m IssyBufs
m_Plps[0] .m_IssyTDesign =
m_Plps[0] .m_CompensatingDelay
m_Plps[0] .m TimeIlType
m_Plps[0] .m _TimeIlLength
m_Plps[0] .m FrameInterval

m _Plps[0] .m FirstFrameIdx
m_Plps[0] .m _Rotation
m_Plps[0] .m_InBandAFlag
m_Plps[0] .m NumOtherPlpInBand
m_Plps[0] .m_InBandBFlag =

Second data PLP

.m_Plps[1l].m Id =
.m_Plps[1l] .m_Groupld

.m _Plps[l] .m Type

.m_Plps[1l].m Modulation
.m_Plps[1l] .m _CodeRate
.m_Plps[1l] .m_FecType
.m_Plps[1l].m Hem
.m_Plps[1l].m Npd
.m_Plps[1l].m Issy

.m_Plps[1l].m IssyBufs

.m Plps[1l].m IssyTDesign
.m_Plps[1l].m CompensatingDelay
.m_Plps[1l].m TimeIlType =
.m Plps[l] .m TimeIlLength =
.m_Plps[l].m FrameInterval =
.m _Plps[l] .m FirstFrameIdx
.m_Plps[1l] .m Rotation
.m_Plps[1l].m InBandAFlag
.m_Plps[1l] .m NumOtherPlpInBand
.m Plps[1l].m_InBandBFlag
.m_Plps[l].m FfFlag

.m _Plps[l] .m FirstRfIdx

m _Plps[1l] .m NumBlocks
m_Plps[l].m TsRate =

Common PLP

26

0; // n.a. for non-TFS

0;

0;

DTAPI_DVBT2_ PLP_TYPE 2;
DTAPI_DVBT2_ QPSK;
DTAPI_DVBT2 COD_1_2;
DTAPI_DVBT2_ LDPC_64K;
true;

true;
DTAPI_DVBT2_ISSY LONG;
1048576;

949777;

-1; // Auto
DTAPI_DVBT2_ IL ONETOONE;
1;

1;

0;

true;

true;

0;

false;

false;

0;

14;

6000000;

1;

0;
DTAPI_DVBT2_PLP_TYPE 2;
DTAPI_DVBT2 QPSK;
DTAPI_DVBT2 COD_1 2;
DTAPI_DVBT2_LDPC_64K;
true;

true;
DTAPI_DVBT2_ISSY LONG;
1048576;

949777;

-1; // Auto
DTAPI_DVBT2_IL ONETOONE;
1;

1;

0;

true;

true;

0;

false;

false;

0;

14;

6000000;

deklec

DTAPI Manual
Overview and data formats

// PLP Inputs

// No PAPR ACE

// Enable L1 PAPR

DvbT2Pars.m_Plps[2]
DvbT2Pars.m Plps[2]
DvbT2Pars.m_Plps[2]
DvbT2Pars.m_Plps[2]
DvbT2Pars.m Plps[2]
DvbT2Pars.m_Plps[2]
DvbT2Pars.m_Plps[2]
DvbT2Pars.m Plps[2]
DvbT2Pars.m_Plps[2]
DvbT2Pars.m Plps[2]
DvbT2Pars.m Plps[2]
DvbT2Pars.m_Plps[2]
DvbT2Pars.m Plps[2]
DvbT2Pars.m Plps[2]
DvbT2Pars.m Plps[2]
DvbT2Pars.m Plps[2]
DvbT2Pars.m_ Plps[2]
DvbT2Pars.m Plps[2]
DvbT2Pars.m Plps[2]
DvbT2Pars.m Plps[2]
DvbT2Pars.m Plps[2]
DvbT2Pars.m Plps[2]
DvbT2Pars.m Plps[2]
DvbT2Pars.m Plps[2]

.m_Id
.m_GroupId
.m_Type
.m_Modulation
.m_CodeRate
.m_FecType
.m_Hem

.m_Npd

.m_Issy
.m_IssyBufs
.m_IssyTDesign

.m_CompensatingDelay

.m_TimeIlType
.m_TimeIlLength
.m_FrameInterval
.m_FirstFrameIdx
.m_Rotation
.m_InBandAFlag

.m_NumOtherPlpInBand =

.m_InBandBFlag
.m_FfFlag
.m_FirstRfIdx
.m_NumBlocks
.m_TsRate

// No test point data output
DvbT2Pars.m TpOutput.m Enabled = false;

DvbT2Pars.m PaprPars.m AceEnabled

// Only P2 P2 PAPR TR

DvbT2Pars.m_ PaprPars.m TrEnabled
DvbT2Pars.m PaprPars.m TrP20nly
DvbT2Pars.m PaprPars.m TrMaxIter
DvbT2Pars.m_PaprPars.m TrVclip

DvbT2Pars.m_PaprPars.m LlAceEnabled
DvbT2Pars.m PaprPars.m LlAceCMax

// PLP[0] input uses MPLP FIFO index 0
DvbT2Pars.m_PlpInputs[0].m DataType
DvbT2Pars.m_PlpInputs[0].m FifoIdx

DvbT2Pars.m PlpInputs[0].m BigTsSplit.m Enabled = false;

// PLP[1] input uses MPLP FIFO index 1
DvbT2Pars.m_PlpInputs[l].m DataType
DvbT2Pars.m_PlpInputs[l].m FifoIdx

DvbT2Pars.m PlpInputs[l].m BigTsSplit.m Enabled = false;

// PLP[2] input uses MPLP FIFO index 2
DvbT2Pars.m PlpInputs[2].m DataType
DvbT2Pars.m_PlpInputs[2].m FifolIdx

DvbT2Pars.m PlpInputs[2].m BigTsSplit.m Enabled = false;

2;
0;

DTAPI_DVBT2 PLP_TYPE COMM;

DTAPI_DVBT2_QPSK;
DTAPI_DVBT2 COD_1_2;
DTAPI_DVBT2_ LDPC_16K;
true;

true;
DTAPI_DVBT2_ISSY_ LONG;
1048576;

949777;

-1; // Auto
DTAPI_DVBT2_IL ONETOONE;
1;

1;

0;

true;

true;

0;

false;

false;

0;

9;

6000000;

DtPlpInpPars: :TS188;
0;

DtPlpInpPars: :TS188;
1;

DtPlpInpPars: :TS188;
2;

// No virtual output is used through callback functions
DvbT2Pars.m VirtOutput.m Enabled = false;

false;

true;
true;

1;

4.32;

true;

0.0;

deklec

DTAPI Manual
Overview and data formats

// PAPR Bias ballancing and bias ballancing cells
DvbT2Pars.m PaprPars.m BiasBalancing =1;
DvbT2Pars.m_PaprPars.m NumBiasBalCells = 0;

// No TX signalling
DvbT2Pars.m_TxSignature.m TxSigAuxEnabled false;
DvbT2Pars.m_TxSignature.m TxSigFefEnabled = false;

// We have RF output so no T2MI output
DvbT2Pars.m T2Mi.m Enabled = false;

// No RBM validation
DvbT2Pars.m RbmValidation.m Enabled = false;

// Check whether parameters are valid
dr = DvbT2Pars.CheckValidity() ;
if (dr '= DTAPI_OK)

exit(dr);

// Get the TSRates of the PLPs

for (int i=0; i<3; i++)

{
int TsRate;
DtapiModPars2TsRate (TsRate, DvbT2Pars, 1i);
printf ("TS-rate PLP[%d]: %d bps\n", i, TsRate);

// Set transmitter to IDLE
dr = Outp.SetTxControl (DTAPI_TXCTRL IDLE) ;
if (dr !'= DTAPI_OK)

exit(dr) ;

// Initialize the modulator.
dr = Outp.SetModControl (DvbT2Pars) ;
if (dr '= DTAPI_OK)

exit(dr) ;

// Set transmitter to HOLD
dr = Outp.SetTxControl (DTAPI_TXCTRL HOLD) ;
if (dr '= DTAPI_OK)
exit(dr);
bool InSendMode = false; // Not in SEND mode (yet)

// Determine the FIFO load threshold
int RfFifoSize;
dr = Outp.GetFifoSize (RfFifoSize) ;
if (dr '= DTAPI_OK)

exit(dr);

// Threshold is set to 75% of the FIFO size
int Iniload = 3*RfFifoSize / 4;

// Open the input files and check the opened files
const int NumInputs = 3;
FILE* Files[NumInputs];
Files[0] = fopen("C:\\Data\\Vv402_Plp0.ts", "rb");
Files[1l] = fopen("C:\\Data\\Vv402_ Plpl.ts", "rb");
Files[2] = fopen("C:\\Data\\Vv402_Plp2.ts", "rb");

if (Files[0]==NULL || Files[1]==NULL || Files[2]==NULL)

dr = DTAPI_E;

28

deklec

DTAPI Manual
Overview and data formats .E n m

printf ("Press any key to stop...");

// Do while no keyboard key is hit and all is OK
while (! kbhit() && dr == DTAPI_OK)
{
// If not in SEND mode yet, check whether we can go to SEND mode
if (!'InSendMode)
{
// Get the FIFO load of the RF output
int RfFifoload;
dr = Outp.GetFifoload (RfFifoLoad) ;
if (dr !'= DTAPI_OK)
break;

if (RfFifolLoad >= IniLoad)
{
// Goto SEND mode
dr = Outp.SetTxControl (DTAPI_TXCTRL SEND) ;
if (dr '= DTAPI_OK)
break;

// Now we can enter SEND mode
InSendMode = true;

// Lets assume all MPLP FIFOs are filled until found otherwise
bool AllFifosFilled = true;
for (int FifolIdx=0; FifoIdx<NumInputs && dr == DTAPI_OK; FifoIdx++)
{
// Check the amount free in the MPLP FIFO
int NumFree;
dr = Outp.GetMplpFifoFree (Fifoldx, NumFree) ;
if (dr !'= DTAPI_OK)
break;
// Skip this MPLP FIFO if too less room is available
if (NumFree < sizeof (TempRdBuf))
continue; // next FIFO

// This MPLP FIFO is not filled enough
AllFifosFilled = false;

// Read a chunck of data
int NumRead = (int)::fread(TempRdBuf, 1, sizeof (TempRdBuf),
Files[FifoIdx]) ;
// EOF? then goto begin of file
if (feof(Files[Fifoldx]))
::fseek (Files[FifoIdx], 0, SEEK SET);

// Write the data to the MPLP FIFO
dr = Outp.WriteMplp (FifoIdx, TempRdBuf, NumRead) ;
if (dr !'= DTAPI_OK)

break;

// All FIFOs filled? then sleep for a while, to prevent an endless loop.
if (AllFifosFilled)
Sleep (10) ;

// Get and print the status of the DVB-T2 modulation

29

DTAPI Manual
Overview and data formats .E n m

DtDvbT2ModStatus ModStatus;

Outp.GetMplpModStatus (&§ModStatus) ;

printf ("\nDVB-T2 Modulator Status:"
"\n\t#BitrateOVF: %I64d"
"\n\t#BlockOVF : %$I64d"
"\n\t#TTO-Error : %$I64d\n",
ModStatus.m BitrateOverflows,
ModStatus.m PlpNumBlocksOverflows,
ModStatus.m_TtoErrorCount) ;

// Set transmitter to IDLE again
Outp.SetTxControl (DTAPI_TXCTRL_ IDLE) ;

// Detach hardware
Outp.Detach(DTAPI_INSTANT_DETACH);
Dvc.Detach() ;

// Close the input files

for (int i=0; i<NumInputs; i++)
if (Files[i] != NULL)
fclose (Files[i]) ;

return dr;

Figure 19. DVB-T2 stream generator with the DTA-2115.

30

DTAPI Manual
Overview and data formats .E n m

7. Advanced Demodulator API

7.1. Introduction

The advanced demodulator APl is a subsystem of DTAPI that supports the reading of one or multiple
real-time streams and getting advanced measurements using SDR (Software Defined Radio) tech-
niques. Each stream can be a data stream or a stream of advanced RF-measurement values.

The advanced demodulator APl is only available on receiver devices that can receive and demodulate
I/Q samples, at the moment only the DTA-2131.

7.2. Streaming Model

The streams are generated with call-back functions that are to be provided by the DTAPI user. Multiple
parallel data streams can be generated in parallel:
e For ATSC 3.0, DVB-C2 and DVB-T2: multiple PLPs can be generated in parallel. Data PLPs
can be combined with common PLPs.
e For DVB-T2 a T2MI stream with all PLPs embedded can be generated?.

e For ISDB-T, layer A, B and C can be demodulated in parallel.

Also, multiple streams of advanced RF-measurement values can be generated in parallel:
Constellation data points

Spectrum data points

Transfer Function data points®

Impulse Response data points®

The closses and structures that are related to Advanced Demodulator are specified in the document
DTAPI Reference — Advanced Demodulator API. The main DTAPI header file and library include the
class definitions required for the Advanced Demodulator. This section describes the usage of these
classes and structures.

7.3. Licensing

Demodulation in DTAPI without advanced RF-measurements does not require a license. It does not
matter whether the underlying device is a hardware demodulator, such as the DTA-2138 DVB-T2 /
DVB-C2 receiver, or an |/Q demodulator card such as the DTA-2131.

The following licenses are available to enable advanced RF-measurements functionality:

e The RxaB license enables usage of advanced RF-measurements for ATSC (8VSB), DAB,
DVB-C2, DVB-T, QAM-A (DVB-C), QAM-B, QAM-C and ISDB-T.

e The rxaT2 license enables usage of advanced RF-measurements for the modulation stand-
ards mentioned under rRxaB and includes DVB-T2.

e The rxaa3 license enables usage of advanced RF-measurements for the modulation stand-
ards mentioned under rRxaB and includes ATSC3.0.

¢ The rxa license enables usage of advanced RF-measurements for all modulation standards.

e The xPRT license (DTC-344-XPRT) enables the advanced demodulation/RF-analysis applica-
tions (Atsc3Xpert, C2Xpert and T2Xpert) it also enables usage of advanced RF-measurements
for all modulation standards.

2 Either a T2MI stream can be generated, or one or more PLPs, but not both at the same time.
3 Only available for OFDM based modulation standards
4 Only available for OFDM based modulation standards

DTAPI Manual
Overview and data formats .E n m

7.4. Advanced Demodulator Object Model

The advanced demodulator is represented by the Dtadvbemod class. The usage of the advanced clas-
ses differs significantly from the “normal” DTAPI input channels.

e The standard input channel closs DtInpChannel uses a FIFO to store the demodulated
data packets and a read function is used to process the packets.

e The advanced demodulator class DtadvDemod does not store the data but uses call-back
functions to convey Transport Packets or measurements values. By registering multiple
call-backs, the user can receive multiple PLP and stream with measurement values simul-
taneously.

7.5. Attaching to an Advanced Demodulator

Attaching an advanced demodulator object to a device is no different from using a standard demod-
ulator channel, except that DtAadvDemod is used instead of DtInpChannel. First, a DtDevice object must
be instantiated and attached to the hardware, and then a btadvbemod object can be attached to the
device.

// Error-handling code has been omitted
DtDevice Dvc;
Dvc.AttachToSerial (2131123456) ;

// Attach an advanced demodulator object to the device
DtAdvDemod AdvDemod;
AdvDemod.AttachToPort (&Dve, 1) ;

Figure 20. Attaching a DtAdvDemod object to the hardware.

7.6. Virtual Input Channel — User-Supplied I/Q Samples

The advanced demodulator APl supports a new type of input channel, a virtual input, enabling pro-
cessing of user supplied I/Q samples. It enables the user to feed the advanced demodulator with I/Q
samples, e.g. from file, instead of DTAPI reading the data from a physical receiver such as the

DTA-2131.

A virtual channel can be created with the Attachvirtual member function. The first parameter of this
function is a pointer to a DtDevice object. This device is only required to hold the license for the
advanced demodulator API (license rRxa). The second parameter specifies the call-back function for
obtaining the 1I/Q samples, while the third parameter is an opaque pointer. When the advanced de-
modulator requires new samples, the call-back function is invoked with the opaque pointer and an
I/Q sample buffer as arguments.

DTAPI Manual
Overview and data formats .E n m

Example code to create a virtual channel is shown in Figure 21.

{
// Device is only used for holding the RX ADV license

DtDevice LicDvc;
// Code to attach to device goes here

DtAdvDemod AdvDemod;
if (AdvDemod.AttachVirtual (&LicDvc, ::ReadIgSamps, NULL) != DTAPI_OK)
{
// Error-handling code
}

etc.

}

void ReadIgSamps (void* pOpaque, unsigned char* pIgBuf,
int IgBufSize, int& IgLength)
{
// Code to get I/Q samples (eg from file) and write to pIgBuf
}

Figure 21. Attaching a DtAdvDemod object to a virtual input.

To avoid memory leaks, a virtual ptadvbemod object shall be detached from the hardware after all
operations on the channel have been completed.

7.7. Receiving PLP Data and Constellation points

The core of an application using the advanced demodulator is shown in Figure 22. The code assumes
that an btAadvDemod object T2In has been attached to the hardware.

This example demodulates one PLP and for the same PLP the constellation points are streamed to the
application using call-back functions. These “streaming” callback functions should not block and
should be kept short in processing time to avoid that the advanced demodulator stalls. This example
could easily be extended to demodulate all PLPs and retrieve multiple streams with measurements

33

DTAPI Manual
Overview and data formats .E n m

simultaneously. The configuration parameters for stream selection are explained in detail in the doc-
ument DTAPI Reference — Advanced Demodulator API.

// Select DVB-T2 demodulation, 8MHz bandwidth
DtDemodPars* pModPars = new DtDemodPars() ;
pModPars->SetModType (DTAPI_MOD DVBT2) ;
DtDemodParsDvbT2* T2Pars = pModPars->DvbT2() ;
T2Pars->m Bandwidth = DTAPI_DVBT2_ 8MHZ;
T2Pars->m T2Profile = 0;

T2In.SetDemodControl (pModPars) ;
T2In.SetTunerFrequency (666000000) ;

// Create DVB-T2 selection parameters with PLP number
DtDvbT2StreamSelPars T2StreamSelPars;

T2StreamSelPars.m Plpld = 0;

T2StreamSelPars.m CommonPlpId = -1; // Don’t use a common PLP

// Open a PLP stream using the selection parameters
DtStreamSelPars StreamSelPars;

StreamSelPars.m Id = 1; // Unique ID
StreamSelPars.m_Type = DtStreamSelType::STREAM DVBT2;
StreamSelPars.u.m DvbT2 = T2StreamSelPars;
T2In.OpenStream(StreamSelPars) ;

// Select a stream of constellation points
DtConstelPlotSelPars ConstellationPars;
ConstellationPars.m Index = 0; // PLP index
ConstellationPars.m MaxNumPoints = 500;
ConstellationPars.m ConstellationType = 0;
ConstellationPars.m Period = 100; // 100ms

// Open this stream of constellation points
StreamSelPars.m_Id = 2; // Unique ID
StreamSelPars.m Type = DtStreamSelType::STREAM CONSTEL;
StreamSelPars.u.m Constel = ConstellationPars;
T2In.OpenStream(StreamSelPars) ;

// Streaming data callback functions
T2In.RegisterCallback (WriteStreamFunc, NULL) ;
T2In.RegisterCallback (WriteMeasFunc, NULL) ;

// Start advanced demodulation
T2In.SetRxControl(DTAPI_RXCTRL_BCV);

// Callback functions
static void WriteStreamFunc (void* pOpaque, DtStreamSelPars& StreamSel,
const unsigned char* pData, int Length)

if (StreamSel.m Id == 1)
// Process transport packets

static void WriteMeasFunc(void* pOpaque, DtStreamSelParsé& StreamSel,
DtMeasurement* pMeasurement)

if (StreamSel.m Id == 2 &&
pMeasurement ->m MeasurementType == DtStreamSelType: :STREAM CONSTEL)
// Process constellation points

Figure 22. Receiving a PLP and constellation points from a DVB-T2 signal.

34

DTAPI Manual
Overview and data formats

7.8. Retrieving Statistics

deklec

The Getstatistics method retrieves dynamic statistical information about the input signal. The ex-
ample in Figure 23 shows how to retrieve LDPC related statistics and the DVB-T2 L1 data structure.
Demodulation statistics can be retrieved using the DtInpChannel or the DtadvDemod class and are

explained in detail in the document DTAPI Reference — Advanced Demodulator API.

DtDemodLdpcStats LdpcStats;
DtDemodlLdpcStats* pLdpcStats = &LdpcStats;
DtDvbT2DemodLl1Data Lldata;
DtDvbT2DemodLlData* pLlData = &Lldata;

DtStatistic Stats[2];
Stats[0].SetId(DTAPI_STAT LDPC_STATS) ;
Stats[0].m_IdXtra[0] = 0; // plp id
Stats[1].SetId(DTAPI_STAT DVBT2_LI1DATA) ;

DTAPI_RESULT dr = TunPort.GetStatistics(2, Stats);

// Get LDPC statistics
Stats[0] .GetValue (pLdpcStats) ;
if (Stats[0].m Result == DTAPI_ OK)
printf ("FEC max it: %d\n", pLdpcStats->m FecBlocksItMax) ;
else
printf("Result: %d\n",Stats[0].m Result);

// Get DVB-T2 L1 data
Stats[1] .GetValue (pLlData) ;
if (Stats[l].m Result == DTAPI OK && pLlData->m LlPost.m Valid)
printf("MOD: %d\n", pLlData->m LlPost.m Plps.at(0) .m Modulation);
else
printf ("Result: %d\n",Stats[l].m_Besult);

Figure 23. Retrieve LDPC and DVB-T2 L1 statistical data.

7.9. Set Generic Demodulation Parameters

The software demodulation core has some generic parameters that are not specific to a demodulation
standard. These parameters can be set using the setPars method in DtInpChannel or DtAdvDemod.
The example in Figure 24 sets two parameters that influence the CPU usage for the advanced demod-

ulation software.

// Configure average LDPC iterations, to set a limit on CPU usage
DtPar Pars[2];

Pars[0] .m_ParId = DTAPI_PAR DEMOD_LDPC_AVG;

Pars[0] .m ValueType = DtPar::ParValueType::PAR VT INT;

Pars[0] .SetValue (3) ;

// Configure if MER measurement should be done (will influence CPU load)
Pars[1].m ParId = DTAPI_PAR DEMOD MER ENA;

Pars[l] .m ValueType = DtPar::ParValueType::PAR VT BOOL;

Pars[1l] .SetValue (true) ;

DTAPI _RESULT dr = T2In.SetPars(2,Pars);
if (dr !'= DTAPI_QK)
printf ("SetPars() failed.\n");

Figure 24. Configure CPU usage for demodulation using SetPars

35

DTAPI Manual
Overview and data formats .E n m

8. SDI over IP

8.1. Overview

SDI-over-IP is encapsulating an SDI stream in IP packets, transmitting it over an IP network and de-
encapsulating the stream back to SDI.

The DekTec network cards (DTA-160, DTA-2160, DTA-2162) support SD-SDI over RTP conforming to
the SMPTE-2022-5, SMPTE-2022-6 and SMPTE-2022-7 specifications. HD-SDI and 3G-SDI are not
(yet) supported.

DTAPI supports 10-bit full-frame SDI in both 525-line mode and 625-line mode. Please refer to sec-
tion 9.3 for details about the representation of 10-bit SDI in DTAPI.

8.2. Using SDI-over-IP with DTAPI

The usage DTAPI to transmit or receive SDI-over-IP is relatively straightforward. The sections below
provide code examples for initialising and configuring SDI-over-IP transmission and reception.

Before reception or transmission can begin, your application must configure the SDI standard with the
SetIpPars function. The m_VideoStandard member in class DtIpPars indicates the SDI standard to
use. Each IP channel may use a different SDI standard.

e Native SDI channels (not over IP) use SetIoConfig to set the SDI standard. This I/O configuration mecha-
nism is not supported for SDI-over-IP channels.

DTAPI Manual
Overview and data formats .E n m

8.3. SDI Transmit

Figure 25 shows a code snippet for initializing and configuring an output channel for transmitting 10-
bit 525-line SDI over IP to multicast IP address 239.1.1.1 with IP port 9999.

For correct operation, the size of the data written to the output channel must be a multiple of the SDI
frame size.

DtDevice Dvc;
DtOutpChannel Outp;
DtIpPars IpPars;
DTAPI RESULT dr;

// Attach to a DTA-2162

dr = Dvc.AttachToType (2162) ;

if (dr !'= DTAPI_OK)
exit(dr);

// Attach to GigE port 1
dr = Outp.AttachToPort(&Dvc, 1);
if (dr !'= DTAPI_OK)

exit(dr);

// Set the transmit mode to 10-bit SDI full-frame mode
dr = Outp.SetTxMode (OTAPI_TXMODE SDI_10B | DTAPI_TXMODE SDI_FULL, 0);
if (dr != DTAPI_OK)

exit(dr);

// Initialise the IP parameters
DtapiInitDtIpParsFromIpString(IpPars, “239.1.1.1”, NULL);
IpPars.m DstPort = 9999;
IpPars.m_Protocol = DTAPI_PROTO_BTP;
IpPars.m_IpProfile.m VideoStandard = DTAPI_VIDSTD 525I59 94;
dr = Outp.SetIpPars (&IpPars) ;
if (dr '= DTAPI_OK)

exit(dr);

// At this point the IP output channel is initialised.

// We can now set the output channel TxControl to HOLD and SEND.

// Writing SDI frames to the output buffer can be achieved with the
// code snippet described in section 3.5 of this document.

Figure 25. Code snippet to initialize transmission of 10-bit SD-SDI over IP

DTAPI Manual
Overview and data formats

8.4. SDI Receive

deklec

Figure 26 shows a code snippet for initializing and configuring an input channel for receiving 10-bit

525-line SDI format over IP from multicast IP address 239.1.1.1 and IP port 9999.

The input channel supports the ReadFrame function that returns a complete SDI frame from the input

buffer. See the “DTAPI Reference — Core Classes” for the details of this function.

DtDevice Dvc;

DtInpChannel Inp;
DtIpPars IpPars;
DTAPI RESULT dr;

// Attach to a DTA-2162

dr = Dvc.AttachToType (2162) ;

if (dr !'= DTAPI_OK)
exit(dr);

// Attach to GigE port 2
dr = Outp.AttachToPort (&Dvc, 2);
if (dr !'= DTAPI_OK)

exit(dr);

// Set the receive mode to 10-bit SDI full-frame mode
dr = Outp.SetRxMode (DTAPI_RXMODE_SDI_10B | DTAPI_RXMODE SDI_FULL) ;
if (dr !'= DTAPI_OK)

exit(dr);

// Initialise the IP parameters
DtapiInitDtIpParsFromIpString(IpPars, “239.1.1.1”, NULL);
IpPars.m DstPort = 9999;
IpPars.m_Protocol = DTAPI_PROTO_BTP;
IpPars.m_IpProfile.m VideoStandard = DTAPI_VIDSTD 525I59 94;
dr = Inp.SetIpPars (&IpPars) ;
if (dr '= DTAPI_OK)

exit(dr);

// At this point the IP input channel is initialised.

// We can now set RxControl to RCV and wait for the SDI data.

// See section 0 for details. Instead of the Read function, we can use
// the ReadFrame function to read the complete SDI frame at once.

Figure 26. Code snippet to initialize reception of 10-bit SD-SDI over IP

38

DTAPI Manual
Overview and data formats .E n m

9. Definition of data formats

This section provides details about the different data formats used by DTAPI for transmitting and re-
ceiving data.

9.1. Generic Stream Encapsulation (GSE) Packet

GSE is defined in ETSI TS 102 606. It provides means to carry packet-oriented protocols such as IP on
physical layers such as DVB-T2 and DVB-C2. The multi-PLP modulator APl and the advanced demod-
ulator API support GSE packets.

A GSE packet consists of a fixed-size header, followed by a variable size extension header and a data
part.

Syntax #bits | Mnemonic
GsePacket() {
protocol_type 16 | vimsbf

if (GseLabelType == NONE) {

reserved 48 | bslbf
} else if (GseLabelType == 3BYTE) {

label_3byte 24 | bslbf

reserved 24 | bslbf
} else if (GseLabelType == 6BYTE) {

label_6byte 48 | bslbf
}
for (i=0; i<NT; i++)

extension_header_byte 8 | bslbf

for (i=0; i<N2; i++)
data_byte 8 | bslbf

}

Notes:

e The structure is used by the DVB-C2, DVB-S2(X) and DVB-T2 modulator when the payload
type is set to GSE.

e The structure is used by the DVB-C2 and DVB-T2 demodulator when the selected stream type
is GSE.

e This structure is not used for raw GSE-packets. See ETSI TS 102 606 table 2.

protocol type
Protocol type carried in the packet, 16-bit field (2 bytes network order). Refer to IETF RFC 4326:
"Unidirectional Lightweight Encapsulation (ULE) for Transmission of IP Datagrams over an
MPEG-2 Transport Stream (TS)" for details.

label 3byte, label 6byte

Label used for addressing, 0, 3 or 6 bytes. For the modulator, the address length is specified by
GseLabelType. The total length of the label and the reserved bits is 6 bytes.

extension header byte

Optional extension header bytes. The format depends on protocol type and is defined by the
ULE specification IETF RFC 4326.

data byte
Packet data byte.

DTAPI Manual
Overview and data formats .E n m

9.2. L.3 Baseband Frame

L.3 Baseband frames are generated by an input channel if the DTAPI_RXMODE STL3,
DTAPI_RXMODE_STL3FULL Oor DTAPI_RXMODE_STL3ALL receive-mode is used (see DTAPI Reference —
Core Classes function DtInpChannel: : SetRxMode).

The L.3 Baseband frames are also used for DVB-S.2(X) L.3 baseband frame modulation (when the
DtOutpChannel: : SetModControl is set to DTAPI_MOD_ DVBS2_L3 Or DTAPI_MOD_DV'BSZX_L3).

Refer to the SatLabs L.3 document and for more details on the L3 fields.

Syntax #bits | Mnemonic
L3 frame() {
if (timestamp_flag) {
TimeStamp[7..0] 8 | uimsbf
TimeStamp[15..8] 8 | uimsbf
TimeStamp[23..16] 8 | uimsbf
TimeStamp[31..24] 8 | uimsbf
}
L3Sync /* OxB8 */ 8 | uimsbf
AcmCommand 8 | uimsbf
if (AcmCommand points to DVB-S2X VL-SNR) {
AcmCommand?2 8 | uimsbf
}
CNI 8 | uimsbf
PIFrameld 8 | uimsbf
BBHEADER() {
MaTypel 8 | uimsbf
MaType2 8 | uimsbf
Upl 16 | vimsbf
Dfl 16 | vimsbf
Sync 8 | uimsbf
SyncD 16 | vimsbf
Crc8 8 | uimsbf
}
for (i=0; i<n; i++)
PayloadByte 8 | uimsbf
}
Notes:

e The Timestamp field is not transmitted on the ASI output port when looping-through L.3
baseband frames to the ASI output port on the DTA-2137.

e The Timestamp field is not used for DVB-S.2(X) L.3 baseband frame modulation

e In receive-mode DTAPI_RXMODE_STL3, only data frames are added to the stream.
In receive-mode DTAPI_RXMODE_STL3FULL, data and dummy frames are added. In receive-mode
DTAPI_RXMODE STL3ALL (DTA-2132 only) data, dummy and error frames are added.

TimeStamp

The timestamp is a 32-bit field that indicates the value of the system reference clock at the
moment the first byte of the baseband frame was received.

DTAPI Manual

Overview and data formats .E n m

L3Sync

Synchronization word: fixed value 0xB8.
AcmCommand

MODCOD and frame type. The meaning of bits 7..1 depend on bit 0.
AcmCommand bit 0 ==

Bit 7..3 |DVB-S2 MODCOD, see the MODCOD field in the DVB-S2 specification.
Bit 2 FECFRAME size (0 = normal: 64 800 bits; 1 = short: 16 200 bits)

Bit 1 Pilots configuration (0 = no pilots, 1 = pilots)

AcmCommand bit 0 == 1

Bit 7..2 |DVB-S2X MODCOD, see the MODCOD field in the DVB-S2X specification. Note
that the PLS-code = DVB-52X MODCOD * 2 + 128.

Bit 1 Pilots configuration (0 = no pilots, 1 = pilots)

Please note that the receiver firmware (DTA-2137 and DTA-2132) deletes dummy and error

frames (MODCOD=0), wunless in receiving mode DTAPI RXMODE STL3FULL

or
DTAPI_RXMODE_STL3ALL is used.

AcmCommand?2

This field is only present for DVB-S2X MODCOD >=0 and < 2 (PLS-code >=128 and PLS-
code <132).

Bit 3..0 Index pointing to the VL-SNR header sequence.
Bit 7..4 Reserved; setto 0

CNI

8-bit Carrier-to-Noise plus interference ratio. The CNI value is updated every 50ms. The reso-

lution is 0.125dB per unit and the range is -1.0...30.75dB. The encoding is shown in the fol-
lowing table:

Value Meaning

0x00 Receiver is not in lock, CNI is not available
0x01 -1.0 dB

0x02 -0.875 dB

O0xFE 30.625 dB
OxXFF > 30.75dB

Note that the CNI for received dummy frames is set to zero.

PlFrameId

Modulo-256 frame counter generated by the demodulator. The counter is incremented for each
baseband frame received by the demodulator.

Please note that the P1FrameId increment may not be equal to 1, since dummy and error
frames are deleted by the firmware.

BBHEADER ()
The DVB-S2 BBHEADER. Please refer to the DVB-S2 specification for details.

DTAPI Manual
Overview and data formats .E n m

Please note that the BBHEADER for dummy and error frames is set to zero.

MaTypel, MaTypeZ

Describes the input stream format, Mode Adaptation and transmission roll off.
Upl

User-packet length in bits, in the range 0...65535.

Dfl
Data-field length in bits, in the range 0...58112.

Sync
Copy of the user-packet sync byte (e.g. O0x47 for MPEG2 Transport Stream packets)

SyncD

Distance in bits from the beginning of the DATA FIELD and the first UP from this frame (first bit
of the CRC-8).

Crcé8
Error detection code applied to the first 9 bytes of the BBHEADER.

PayloadByte
The payload of the baseband frame.

DTAPI Manual
Overview and data formats .E n m

9.3. SDI - 10-bit Format

In 10-bit SDI format, all 10 bits of the SDI samples are stored. The first sample is the EAV code of the
first line of a frame. The first line of a frame is considered to be the first line in which the Field bit in
the EAV code is ‘0’, indicating the first field: line 1 in 625-line mode or line 4 in 525-line mode. The
first sample of a frame is always stored on a 32-bit boundary. Data stuffing of three bytes is needed
in 525-line video mode, since the number of bytes in such a 10-bit frame is not a multiple of four.

Syntax #bits | Mnemonic
sdi_10bit_stream() {
if (timestamp_flag) {
timestamp[7..0] 8 | uimsbf
timestamp|[15..8] 8 | uimsbf
timestamp[23..16] 8 | uimsbf
timestamp[31..24] 8 | uimsbf
}
do {
for (line=1; line <= num_lines; line++) {
sync_code /*‘1111 1111 11" */ 10| bsrtlb
sync_code /* ‘0000 0000 00" */ 10| bsrtlb
sync_code /* ‘0000 0000 00" */ 10| bsrtlb
eav_code(line) 10 | bsrtlb
for (samp=1; samp<=hsyncs_per_line; samp++)
sample_data 10| bsrtlb
sync_code /*‘1111 1111 11" %/ 10| bsrtlb
sync_code /* ‘0000 0000 00" */ 10| bsrtlb
sync_code /* ‘0000 0000 00" */ 10| bsrtlb
sav_code(line) 10| bsrtlb
for (samp=1; samp<=samps_per_line; samp++)
sample_data 10| bsrtlb
}
if (sdi_std==Mode525) {
for (i=0; i<3; i++)
stuffing_byte /* ‘0000 0000" */ 8 | bslbf
}
}
}
timestamp

The value of the reference clock at the moment the first SDI sample of the payload enters the
input channel.

sync_code
Synchronization byte as defined in the BT-656 specification.

eav_code
End of Active Video (EAV) code as defined in the BT-656 specification. The line number is en-
coded in EAV.

sav_code
Start of Active Video code as defined in the BT-656 specification. The line number is encoded in
SAV.

DTAPI Manual
Overview and data formats .E n m

sample data

The 10-bit SDI samples.

stuffing byte
Byte that is produced at the end of a 525-line mode frame only, with the purpose of aligning
the first sample of the next frame to a 32-bit boundary

9.4. SDI - 8-bit Format

In 8-bit SDI format, only the most significant eight bits of each SDI sample are stored. The first sample
is the EAV code of the first line of a frame. The first line of a frame is considered to be the first line in
which the Field bit in the EAV code is ‘0’, indicating the first field: line 1 in 625-line mode or line 4 in
525-line mode. The first sample of a frame is always stored on a 32-bit boundary. No data stuffing
is required since in all modes the number of bytes in an 8-bit frame is divisible by four.

Syntax #bits | Mnemonic
sdi_8bit_stream() {
if (timestamp_flag) {
timestamp[7..0] 8 | uimsbf
timestamp([15..8] 8 | uimsbf
timestamp[23..16] 8 | uimsbf
timestamp[31..24] 8 | uimsbf
}
do {
for (line=1; line <= num_lines; line++) {
sync_code /* ‘1111 1111" */ 8 | bslbf
sync_code /* ‘0000 0000’ */ 8 | bslbf
sync_code /* ‘0000 0000’ */ 8 | bslbf
eav_code(line) 8 | bslbf
for (samp=1; samp<=hsyncs_per_line; samp++)
sample_byte 8 | bslbf
sync_code /* ‘1111 1111" */ 8 | bslbf
sync_code /* ‘0000 0000’ */ 8 | bslbf
sync_code /* ‘0000 0000’ */ 8 | bslbf
sav_code(line) 8 | bslbf
for (samp=1; samp<=samps_per_line; samp++)
sample_byte 8 | bslbf
}
}
}
timestamp

The value of the reference clock at the moment the first SDI sample of the payload enters the
input channel.

sync _code
Synchronization byte as defined in the BT-656 specification.

eav_code
End of Active Video (EAV) code as defined in the BT-656 specification. The line number is en-
coded in EAV.

DTAPI Manual
Overview and data formats .E n m

sav_code

End of Active Video (EAV) code as defined in the BT-656 specification. The line number is en-
coded in EAV.

sample byte
The SDI video data with the two least significant bits removed.

9.5. SDI - Huffman-Compressed

Some of DekTec’s SDI devices support a custom Huffman encoding scheme for compressing of SDI
frames. You can detect the support for this feature by using the DTAPI_CAP_HUFFMAN capability flag.
Using the compressed format can be useful to reduce the size of recorded SDI files. The using com-
pression can also be used to reduce PCl or USB bandwidth requirements.

The table below provides the syntax of a compressed SDI frame.

Syntax #bits | Mnemonic
sdi_compressed stream_with_blanking () {
if (timestamp_flag) {
timestamp([7..0] 8 | uimsbf
timestamp([15..8] 8 | uimsbf
timestamp[23..16] 8 | uimsbf
timestamp[31..24] 8 | uimsbf
}
do {
sync_word /* ‘11 1111 1111 1111 11117 %/ 18 | bsrtlb
for (line=1; line <= num_lines; line++) {
skip_samples(4); /* skip EAV */
prev_data = blanking_level
for (samp=1; samp<=hsyncs_per_line; samp++) {
huffman(sample_data - prev_data) 2-16 |bsrilb
prev_data = sample_data
}
skip_samples(4); /* skip SAV */
prev_data = blanking level
for (samp=1; samp<=samps_per_line; samp++) {
huffman(sample_data - prev_data) 2-16|bsrtlb
prev_data = sample_data
}
}
if (alignment()!=32)
stuffing_data /* ‘0" */ 2-30| bsrtlb
}
}
timestamp

The value of the reference clock at the moment the first SDI sample of the payload enters the
input channel.

sync _word
Synchronization code consisting of 18 consecutive ‘1's.

DTAPI Manual
Overview and data formats .E n m

sample data

The SDI video data.

prev_data
The previous sample of the SDI video data of the same type (Cb, Y, or Cr) as the current sample.

stuffing data
Data that is produced at the end of a frame only, with the purpose of aligning the sync_word
of the next frame to a 32-bit boundary

The table below provides the syntax of a compressed frame with only the active video part.

Syntax #bits | Mnemonic
sdi_compressed _stream_with_blanking () {
if (timestamp_flag) {
timestamp([7..0] 8 | uimsbf
timestamp([15..8] 8 | uimsbf
timestamp[23..16] 8 | uimsbf
timestamp[31..24] 8 | uimsbf
}
do {
sync_word /* ‘11 1111 11111111 11117 %/ 18| bsrtlb
for (line=1; line <= num_lines; line++) {
skip_samples(4); /* skip EAV */
prev_data = blanking_level
for (samp=1; samp<=hsyncs_per_line; samp++) {
huffman(sample_data - prev_data) 2-16|bsrtlb
prev_data = sample_data
}
skip_samples(4); /* skip SAV */
prev_data = blanking_level
for (samp=1; samp<=samps_per_line; samp++) {
huffman(sample_data - prev_data) 2-16 |bsrilb
prev_data = sample_data
}
}
if (alignment()!=32) {
stuffing_data /* ‘0" */ 2-30 | bsrilb
}
}
}
timestamp

The value of the reference clock at the moment the first SDI sample of the payload enters the
input channel.

sync_word
Synchronization code consisting of 18 consecutive ‘1's.

sample data

The SDI video data.

DTAPI Manual
Overview and data formats .E n m

prev_data
The previous sample of the SDI video data of the same type (Cb, Y, or Cr) as the current sample.

stuffing data
Data that is produced at the end of a frame only, with the purpose of aligning the sync_word
of the next frame to a 32-bit boundary

See DTAPI Reference — Core Classes function Dtsdi: :ConvertFrame for conversion between the
compressed Huffman format and one of the uncompressed SDI formats.

9.6. Transparent Mode

Transparent mode adds an extra packetization layer to combine a TS-packet-oriented mode and raw
mode. If the input data contains valid TS packets, each “transparent packet” contains exactly one TS
packet, an optional time stamp and the in-sync flag is set. If the input data is out of sync, the trans-
parent packet contains the raw input data and the in-sync flag is cleared.

Transparent mode is selected by setting the receive mode to DTAPI_RXMODE_STTRP. Transport-stream
monitoring applications can use this mode to receive time-stamped packets for jitter analysis, while
sync errors can still be detected.

Syntax #bits | Mnemonic
transparent_packet() {
if (timestamp_flag) {
timestamp|[7..0] 8 | uimsbf
timestamp[15..8] 8 | uimsbf
timestamp[23..16] 8 | uimsbf
timestamp[31..24] 8 | uimsbf
}
for (i=0; i<204; i++)
payload_byte 8 | bslbf
sync_nibble /*‘0101" */ 4| bslbf
packet_sync 1| bslbf
reserved 3 | bslbf
valid_count 8 | vimsbf
sequence_count[7..0] 8 | uimsbf
sequence_count[15..8] 8 | uimsbf
}
timestamp

The value of the reference clock at the moment the first byte of the data is received.

payload byte
Payload of the transparent packet containing the received data, which is either a TS packet or
raw data. The number of valid bytes in the payload is indicated by the valid count field.
When packet syncis ‘1’ the first payload byte will usually be 47h, but not necessarily! This is
because an incidental error in the sync byte will not cause loss of synchronization.

sync _nibble
The sync nibble is a fixed 4-bit field whose value is ‘0101’ (5). Applications can use this
nibble to synchronize to transparent packets.

packet sync
When set to ‘1’ this flag indicates that synchronization to TS packets has been achieved.

DTAPI Manual
Overview and data formats .E n m

reserved
These bits are reserved for future use.

valid count
This field indicates the number of valid bytes in the payload of the transparent packet. If the
packet sync flag is set this field will be either 188 or 204. If the packet sync flag is not set
the value can be anything between 1 and 204.
If the number of valid bytes is less than 204, then the value of the remaining payload bytes is
undefined.

sequence count
The sequence count is a 16-bit field that contains the original sequence number of the packet
in the Transport Stream. The value of the sequence counter is only meaningful if packet sync
is ‘1’. Without PID filtering, sequence count will be incremented by 1 for each received packet.
When PID filtering is used, sequence count can be used to determine the number of packets
that has been skipped.

9.7. Transmit on Timestamp

The transmit-on-timestamp mode is used to transmit transport packets at user-defined timestamps.
Details of the transmit-on-timestamp mode are described in DTAPI Reference — Core Classes.

Syntax #bits | Mnemonic
txontime_stream() {
do {
timestamp([7..0] 8 | vimsbf
timestamp[15..8] 8 | vimsbf
timestamp[23..16] 8 | vimsbf
timestamp[31..24] 8 | uimsbf
if (TxMode == 188 || TxMode == Add16)
for (i=0; i<188; i++)
tp_byte 8 | bslbf
if (TxMode == 204 || TxMode == Min16)
for (i=0; i<204; i++)
tp_byte 8 | bslbf
}
}
timestamp

Relative time at which to transmit the packet. The timestamp is encoded in four bytes in little-
endian format.

tp byte
Byte in a transport packet.

	1. General Description
	1.1. What is DTAPI?
	1.2. Documentation Overview
	1.3. DTAPI Object Model
	1.4. List of Abbreviations and Glossary of Terms
	1.5. References

	2. Using DTAPI in your Project
	2.1. DTAPI on the Windows Platform
	2.2. Using the Static Link Library
	2.3. Using the .NET Assembly
	2.4. DTAPI on the Linux Platform

	3. DTAPI Basics
	3.1. Attaching to a Device
	3.2. Attaching to a Channel
	3.3. Initialising a Channel
	3.4. Receiving Data
	3.5. Transmitting Data
	3.6. Example Code for a Simple Stream Player

	4. Capabilities and I/O Configuration
	4.1. Introduction
	4.2. Capabilities
	4.2.1. I/O Capability Groups
	4.2.2. Standard Capability Groups

	4.3. I/O Configuration
	4.3.1. SetIoConfig and GetIoConfig
	4.3.2. Relation to Capabilities
	4.3.3. SetIoConfig Variants

	5. DTAPI Concepts
	5.1. Getting Statistics
	5.2. Transmit on Timestamp
	5.3. SDI Genlock Support
	5.4. Vital Product Data (VPD)

	6. Multi-PLP Extensions
	6.1. Licensing
	6.2. Multi-PLP Object Model
	6.3. Attaching to a Multi-PLP Modulator
	6.4. Virtual Channels
	6.5. Streaming MPLP Data
	6.6. Complete Example

	7. Advanced Demodulator API
	7.1. Introduction
	7.2. Streaming Model
	7.3. Licensing
	7.4. Advanced Demodulator Object Model
	7.5. Attaching to an Advanced Demodulator
	7.6. Virtual Input Channel – User-Supplied I/Q Samples
	7.7. Receiving PLP Data and Constellation points
	7.8. Retrieving Statistics
	7.9. Set Generic Demodulation Parameters

	8. SDI over IP
	8.1. Overview
	8.2. Using SDI-over-IP with DTAPI
	8.3. SDI Transmit
	8.4. SDI Receive

	9. Definition of data formats
	9.1. Generic Stream Encapsulation (GSE) Packet
	9.2. L.3 Baseband Frame
	9.3. SDI – 10-bit Format
	9.4. SDI – 8-bit Format
	9.5. SDI – Huffman-Compressed
	9.6. Transparent Mode
	9.7. Transmit on Timestamp

