
1

DTAPI
Audio/Video FIFO Interface (AvFifo)

REFERENCE
Jun 2024

Copyright © 2024 by DekTec Digital Video B.V.
DekTec Digital Video B.V. reserves the right to change products or specifications without notice.

Information furnished in this document is believed to be accurate and reliable, but DekTec assumes
no responsibility for any errors that may appear in this material.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

2

Table of Contents

1. Introduction .. 4
1.1. What is the AvFifo Interface? 4
1.2. The FIFO-Based Interfacing Model 4
1.3. Timing Model ... 4

1.3.1. PTP Agent ... 4
1.3.2. Configuring the PTP Agent in Windows........... 5
1.3.3. Configuring the PTP Agent in Linux 5

1.4. AvFifo Code Examples .. 5
2. Tutorial ... 6
2.1. Introduction ... 6
2.2. Basic Receive Example .. 6

2.2.1. Step 1: Attach to the Hardware 6
2.2.2. Step 2: Initialize Receive FIFO 7
2.2.3. Step 3. Start the Receive FIFO 7
2.2.4. Step 4. Main Loop. .. 7
2.2.5. Step 5. Read and Process Frame 7
2.2.6. Step 6. Clean Up .. 7

2.3. Basic Transmit Example 8
2.3.1. Step 1: Attach to the Hardware 8
2.3.2. Step 2: Initialize Transmit FIFO 9
2.3.3. Step 3. Initialize Time-of-Day 9
2.3.4. Step 4. Start the TxFifo 9
2.3.5. Step 5. Main Loop. .. 9
2.3.6. Step 6. Check for Sufficient Space 9
2.3.7. Step 7. Compute Timestamp........................ 10
2.3.8. Step 8. Assemble a Frame 10
2.3.9. Step 9. Write Frame to TxFifo 10
2.3.10. Step 10. Advance Time-of-Day 10
2.3.11. Step 11. Clean Up. 10

3. AvFifo Concepts .. 11
3.1. Frame Memory Pool ... 11
3.2. Exceptions in AvFifo .. 11

3.2.1. General Philosophy 11
3.2.2. Exception Categories 11

3.3. Using Raw Mode .. 11
3.3.1. Network Byte Order 12
3.3.2. Processing IP Packets in Network Byte Order
with a Little-Endian CPU .. 12
3.3.3. Example – Receiving SMPTE 2110-40 in Raw
Mode 12
3.3.4. Using Bit Fields ... 13

Enumerations (namespace Dtapi::AvFifo) 14
enum class FifoStatus .. 14
enum class HwOrSwPipe 15
enum IpProtocolVersion ... 16
enum IpTransportProtocol 17
enum RxFifoOverflowStrategy 18
enum St2022::FecMode .. 19
enum St2022::LinkMode 20
enum St2110::AudioFormat 21
enum St2110::PackingMode 22
enum St2110::RxFrameFormat 23
enum St2110::Scheduling 24
enum St2110::TxFrameFormat 25
enum St2110::VideoScanning................................ 26

Exceptions (namespace Dtapi::AvFifo) 27

Exceptions ... 27
Structs (namespace Dtapi::AvFifo) 28

struct BlobMetadata ... 28
struct ExactRatio .. 29
struct IpPars .. 30
struct IpSrcFilt .. 31
struct RxStatistics .. 32
struct TxStatistics .. 33
struct VideoSize ... 34
struct YuvPlanes ... 35
struct St2022::RxConfig ... 36
struct St2022::TxConfig ... 37
struct St2110::RxConfigAudio 38
struct St2110::RxConfigRaw 39
struct St2110::RxConfigVideo 40
struct St2110::TxConfigAudio 41
struct St2110::TxConfigRaw 42
struct St2110::TxConfigRawVideo 43
struct St2110::TxConfigVideo 44
struct St2110::VideoPacking 45
struct St2110::VideoTiming 46

Frame (namespace Dtapi::AvFifo) 47
Frame public members .. 47
Frame::Yuv422P_8b_GetPlanes 49

RxFifo (namespace Dtapi::AvFifo) 50
RxFifo::Attach .. 50
RxFifo::Clear ... 51
RxFifo::Configure .. 52
RxFifo::Detach ... 53
RxFifo::GetFifoLoad ... 54
RxFifo::GetMaxSize .. 55
RxFifo::GetSharedBufferSize 56
RxFifo::GetStatistics .. 57
RxFifo::Read .. 58
RxFifo::ReturnToMemPool 59
RxFifo::SetIpPars .. 60
RxFifo::SetMaxSize ... 61
RxFifo::SetSharedBufferSize 62
RxFifo::Start ... 63
RxFifo::Stop ... 64
RxFifo::UsesHwPipe ... 65

TxFifo (namespace Dtapi::AvFifo) 66
TxFifo::Attach .. 66
TxFifo::Clear ... 67
TxFifo::Configure... 68
TxFifo::Detach ... 69
TxFifo::GetFifoLoad ... 70
TxFifo::GetFrameFromMemPool 71
TxFifo::GetMaxSize .. 72
TxFifo::GetSharedBufferSize 73
TxFifo::GetStatistics .. 74
TxFifo::GetStatus ... 75
TxFifo::SetIpPars .. 76
TxFifo::SetMaxSize ... 77
TxFifo::SetSharedBufferSize 78
TxFifo::Start ... 79

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

3

TxFifo::Stop ... 80
TxFifo::UsesHwPipe ... 81
TxFifo::Write ... 82

Helper Functions (namespace Dtapi::AvFifo) ... 83
FifoStatusToMessage ... 83
St2022::Tod2Rtp ... 84

St2110::Rtp2Tod_Audio ... 85
St2110::Rtp2Tod_Video ... 86
St2110::Tod2Rtp_Audio ... 87
St2110::Tod2Rtp_Video ... 88
Tod2Grid_Audio ... 89
Tod2Grid_Video .. 90

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

4

1. Introduction

1.1. What is the AvFifo Interface?

AvFifo, short for Audio/Video FIFO Interface, is a component of the DekTec Application Programming Interface
(DTAPI). While DTAPI offers multiple programming models, including the "input/output channel" model and the
“Matrix API” model, AvFifo introduces a third, FIFO-based model.

Designed specifically for software-based digital-TV processing applications, like video encoders and decoders,
AvFifo facilitates efficient interfacing with SMPTE 2110 and SMPTE 2022-5/6 streams through the DTA-2110
10GbE NIC (Network Interface Card).

For a comprehensive overview of DTAPI and installation instructions, refer to the "DTAPI Manual – Overview and
Data Formats", included with the DTAPI installation.

This manual focuses on the details of the AvFifo API, providing examples to help you understand and implement
the AvFifo interfacing model within your applications.

1.2. The FIFO-Based Interfacing Model

In the AvFifo interfacing model, the unit of data is a "frame," which represents a timestamped unit from a video,
audio, or ancillary data stream. The model simplifies the process of data reception and transmission by efficiently
handling the decoding, encoding, and scheduling of frames.

Reception: The AvFifo implementation decodes frames from incoming IP streams and stores them, along with
their timestamps, in a FIFO. The application then reads frames from the FIFO as needed.

Transmission: The application assembles frame data, computes a timestamp indicating when the frame should
be transmitted, and writes the frame to a FIFO. The AvFifo implementation reads frames from the FIFO and
schedules them for transmission at their respective timestamps.

1.3. Timing Model

1.3.1. PTP Agent

The AvFifo interface relies on the Precision Time Protocol (PTP) for timing, ensuring accurate synchronization
across various system components. All streams use the PTP network clock as their reference clock.

When you install the drivers for Windows or Linux, a PTP agent is automatically installed and runs within the
DTAPI service. This agent synchronizes a clock counter in the hardware with PTP time.

Note: Although the PTP agent is installed by default, it must be enabled manually, as outlined in the subse-
quent sections.

All timestamps in the AvFifo interface are relative to PTP time, ensuring precise synchronization for audio, video,
and ancillary data streams. The AvFifo implementation handles all time-sensitive operations, eliminating the
need for users to perform any manual time-sensitive tasks. This simplifies the process and improves overall
efficiency of the system.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

5

The PTP agent has several settings available for configuration.

Setting Range Description

Enable false, true Turns the PTP agent on or off..

DelayMechanism 0 .. 2 0=auto, 1=EndToEnd, 2=PeerToPeer

NetworkProtocol 0, 1 0=IPv4, 1=IPv6

DomainNumber 0 .. 127

IpV6Scope 1 .. 14

PeerUnicastAddress: IPv4/IPv6 address

1.3.2. Configuring the PTP Agent in Windows

To enable synchronization with PTP in Windows, users must activate the PTP feature in the DtInfo application. A
dialog enables configuring the PTP settings.

1.3.3. Configuring the PTP Agent in Linux

In Linux, the PTP settings are maintained in a configuration file, located in the following directory:
/var/lib/DekTec/Service/PtpClockSlave/.

The filename follows the pattern: "CardSerialNumber_Port0_Inst0.xml", e.g. "2110000018_Port0_Inst0.xml".

Here's an example of the file layout::

<DekTec>

 <PtpClockSlave Cnt="6">

 <ParStrVal S="IpV6Scope" VT="2" VV="5"/>

 <ParStrVal S="DelayMechanism" VT="2" VV="0"/>

 <ParStrVal S="NetworkProtocol" VT="2" VV="0"/>

 <ParStrVal S="PeerUnicastAddress" VT="5" VV="0.0.0.0"/>

 <ParStrVal S="DomainNumber" VT="2" VV="127"/>

 <ParStrVal S="Enable" VT="4" VV="true"/>

 </PtpClockSlave>

</DekTec>

The 'VV' attribute contains the value of the parameter with the attribute name 'S'. Only the 'VV' attribute may be
changed.

Changes made to the settings will come into effect following a restart of the DTAPI service.

1.4. AvFifo Code Examples

Section 2 of this manual introduces the basics of utilizing the AvFifo API to receive or transmit an SMPTE 2110
stream. The tutorial focuses primarily on fundamental concepts and intentionally omits details such as error
handling for simplicity.

For a more comprehensive exploration that includes aspects like error handling, expanded source code exam-
ples can be found on the DekTec website at the following address: www.dektec.com/down-
loads/SDK/#sdkexamples. These AvFifo code examples can be run on both Linux and Windows.

At present, two example codes are available specifically for DekTec NICs that support the AvFifo API. As of the
time of writing, the DTA-2110 is the only supported device, although additional compatible devices will be
introduced shortly. The provided examples are as follows:

 1. AvFifo_VideoRx – This code serves as a SMPTE 2110 video receiver that displays the stream using SDL.

 2. AvFifo_VideoTx – This example is a SMPTE 2110 video test generator.

For updates and additions to these examples, we recommend regularly checking the DekTec website.

http://www.dektec.com/downloads/SDK/#sdkexamples
http://www.dektec.com/downloads/SDK/#sdkexamples

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

6

2. Tutorial

2.1. Introduction

In this tutorial, we will explore a straightforward reception and transmission scenario. We will demonstrate the
process by implementing a basic receive loop using an RxFifo object and a basic transmission loop using a
TxFifo object.

Note: Error handling is omitted for simplicity and clarity; ensure to include it in your production code.

2.2. Basic Receive Example

The following code example demonstrates how to set up DTA-2110 with an RxFifo object for receiving data in
a simple reception scenario.

// 1. Declare the DTA-2110 device object and attach to the hardware.

DtDevice Dta2110{};

Dta2110.AttachToType(2110);

// Here is a good place to check NIC status with Dta2110.IsNetworkCardOperational(1).

// 2. Declare the RxFifo object, attach to port 1 of the DTA-2110, and configure for reception.

AvFifo::RxFifo RxFifo{};

RxFifo.Attach(Dta2110, 1, HwOrSwPipe::PreferHwPipe);

RxFifo.SetIpPars({…});

RxFifo.Configure({…});

// 3. Start the RxFifo.

RxFifo.Start();

// 4. Keep receiving until the stop condition is met.

while (!StopCondition())

{

 // Here is a good place to check the RxFifo status with VideoRxFifo.GetStatus().

 // 5. Read and process a frame from the RxFifo if one is available; otherwise, sleep briefly.

 if (RxFifo.GetFifoLoad() > 0)

 {

 AvFifo::Frame* Frm{RxFifo.Read()};

 ProcessReceivedFrame(Frm);

 RxFifo.ReturnToMempool(Frm);

 } else

 std::this_thread::sleep_for(10ms);

}

// 6. Clean up.

RxFifo.Stop();

RxFifo.Detach();

Dta2110.Detach();

Note This code example is for illustrative purposes only and is not suitable for production use. In a production environment, it is
important to handle errors appropriately by checking return values and using try-catch blocks around sections of code that
may throw exceptions, to ensure that DTAPI operates as expected.

2.2.1. Step 1: Attach to the Hardware

// 1. Declare the DTA-2110 device object and attach to the hardware.

DtDevice Dta2110{};

Dta2110.AttachToType(2110);

To use the A/V FIFO classes, instantiate a DtDevice object and attach it to the DTA-2110, following the instruc-
tions of the "DTAPI Manual – Overview and Data Formats".

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

7

Note
• Several DtDevice methods are available to attach to the hardware. The example uses

DtDevice::AttachToType() to attach to the first available DekTec adapter with the specified type number.

2.2.2. Step 2: Initialize Receive FIFO

// 2. Declare the RxFifo object, attach to port 1 of the DTA-2110, and configure for reception.

AvFifo::RxFifo RxFifo{};

RxFifo.Attach(Dta2110, 1, HwOrSwPipe::PreferHwPipe);

RxFifo.SetIpPars({…});

RxFifo.Configure({…});

After attaching the DtDevice object to the hardware, instantiate an RxFifo (Receive FIFO) object and attach it
to the device object. A parameter of the RxFifo::Attach() call allows specifying a preference for a hardware
or software pipe.

2.2.3. Step 3. Start the Receive FIFO

// 3. Start the RxFifo.

RxFifo.Start();

Starting the RxFifo instructs the hardware to begin receiving IP packets on the configured IP address and port.
When a frame (audio/video/ ancillary data unit) is received, it is written to the RxFifo and its load is incre-
mented.

2.2.4. Step 4. Main Loop.

// 4. Keep receiving until the stop condition is met.

while (!StopCondition())

The main loop continues until a stop condition is met.

Note
• The stop condition will have to be set from another thread.

2.2.5. Step 5. Read and Process Frame

 // 5. Read and process a frame from the RxFifo if one is available; otherwise, sleep briefly.

 if (RxFifo.GetFifoLoad() > 0)

 {

 AvFifo::Frame* Frame{RxFifo.Read()};

 ProcessReceivedFrame(Frame);

 RxFifo.ReturnToMempool(Frame);

 } else

 std::this_thread::sleep_for(10ms);

In the main loop, check the RxFifo’s load to determine if one or more frames are available.

• If a frame is available, read it from the RxFifo, process it and return it to the Frame Memory Pool for
recycling.

• If no frame is available, sleep for a short period of time and try again.

2.2.6. Step 6. Clean Up

// 6. Clean up.

RxFifo.Stop();

RxFifo.Detach();

Dta2110.Detach();

Once the stop condition is met, stop the RxFifo, detach it from the DtDevice object, and detach the DtDevice
object from the hardware if no further actions are needed.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

8

2.3. Basic Transmit Example

The following code example demonstrates how to set up DTA-2110 with a TxFifo object for transmitting data
in a simple transmission scenario.

// 1. Declare DTA-2110 device object and attach to the hardware.

DtDevice Dta2110{};

Dta2110.AttachToType(2110);

// 2. Declare TxFifo object, attach to port 1 of the DTA-2110, and configure for transmission.

AvFifo::TxFifo TxFifo{};

TxFifo.Attach(Dta2110, 1, HwOrSwPipe::PreferHwPipe);

TxFifo.SetIpPars({…});

TxFifo.Configure({…});

size_t FrameSize{…}; // Compute frame size matching configuration parameters.

// 3. Initialize ToD to current time. Add 100ms to have time to create the first few frames.

DtTimeOfDay ToD{};

Dta2110.GetTimeOfDay(ToD);

ToD += 100’000’000; // 100,000,000ns = 100ms

// 4. Start the TxFifo.

TxFifo.Start();

// 5. Keep transmitting until the stop condition is true.

while (!StopCondition())

{

 // Here is a good place to check the TxFifo status with VideoRxFifo.GetStatus().

 // 6. We only write a new Frame to the TxFifo if it has space, otherwise we sleep.

 if (TxFifo.GetFifoLoad() < TxFifo.GetMaxSize())

 {

 // 7. Ensure frame is transmitted at the correct time by aligning to the video media grid.

 ToD = AvFifo::Tod2Grid_Video(ToD, {50, 1});

 // 8. Obtain a Frame from the memory pool, and assemble a video frame in it.

 AvFifo::Frame* Frame{TxFifo.GetFrameFromMemPool(FrameSize)};

 Frame->ToD = ToD;

 Frame->RtpTime = AvFifo::St2110::Tod2Rtp_Video(ToD);

 CreateVideoFrame(Frame);

 // 9. Write the newly assembled Frame to the TxFifo for transmission.

 TxFifo.Write(Frame);

 // 10. Advance the time-of-day (ToD) to the next frame time, which is 20ms later.

 ToD += 20000000; // 20,000,000ns = 20ms

 } else {

 std::this_thread::sleep_for(10ms);

 }

}

// 11. Break down.

TxFifo.Stop();

TxFifo.Detach();

Dta2110.Detach();

Note This code example is for illustrative purposes only and is not suitable for production use. In a production environment, it is
important to handle errors appropriately by checking return values and using try-catch blocks around sections of code that
may throw exceptions, to ensure that DTAPI operates as expected.

Let us proceed by examining the example in a step-by-step manner.

2.3.1. Step 1: Attach to the Hardware

// 1. Declare DTA-2110 device object and attach to the hardware.

DtDevice Dta2110{};

Dta2110.AttachToType(2110);

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

9

Before utilizing the A/V FIFO classes, declare a DtDevice object and attach it to the hardware, in this case to a
DekTec SMPTE 2110 NIC. This step corresponds to the instructions detailed in Section 3.1 of the "DTAPI Manual
– Overview and Data Formats."

Several DtDevice methods are available for attaching to the hardware. In this example, we use
DtDevice::AttachToType(), which establishes a connection with the first available DekTec adapter that
matches the specified type number.

2.3.2. Step 2: Initialize Transmit FIFO

// 2. Declare TxFifo object, attach to port 1 of the DTA-2110, and configure for transmission.

AvFifo::TxFifo TxFifo{};

TxFifo.Attach(Dta2110, 1, HwOrSwPipe::PreferHwPipe);

TxFifo.SetIpPars({…});

TxFifo.Configure({…});

size_t FrameSize{…}; // Compute frame size matching configuration parameters.

Once a DtDevice object attached to the hardware is available, the next step is to create a TxFifo (Transmit
FIFO) object and attach it to the DtDevice object. During the Attach call, a parameter is available to specify a
preference for a hardware or a software pipe.

2.3.3. Step 3. Initialize Time-of-Day

// 3. Initialize ToD to current time. Add 100ms to have time to create the first few frames.

DtTimeOfDay ToD{};

Dta2110.GetTimeOfDay(ToD);

ToD += 100’000’000; // 100,000,000ns = 100ms

When writing frames to the TxFifo, timestamps are required to indicate the desired transmission time for each
frame. To ensure smooth transmission and accommodate potential OS scheduling jitter, frames should be pre-
pared and buffered in the TxFifo ahead of time. In this example, we work 100ms ahead (which could easily
be increased to, for instance, 200ms). To calculate the timestamp for the first frame to be transmitted, we obtain
the current time and add 100ms.

2.3.4. Step 4. Start the TxFifo

// 4. Start the TxFifo.

TxFifo.Start();

With the configuration complete, the TxFifo can be started. Note that starting with an empty TxFifo is valid and
will not lead to an exception. Once the first frame has been written to the TxFifo, it will be read by the AvFifo-
internal internal transmit thread and scheduled.

2.3.5. Step 5. Main Loop.

// 5. Keep transmitting until the stop condition is true.

while (!StopCondition())

{

The main loop continues until a stop condition is detected. This condition can only be set from another thread.

2.3.6. Step 6. Check for Sufficient Space

 // 6. We only write a new Frame to the TxFifo if it has space, otherwise we sleep.

 if (TxFifo.GetFifoLoad() < TxFifo.GetMaxSize())

 {

We only write a new Frame to the TxFifo if it has space, otherwise we sleep briefly and check again.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

10

2.3.7. Step 7. Compute Timestamp

 // 7. Ensure frame is transmitted at the correct time by aligning to the video media grid.

 ToD = AvFifo::Tod2Grid_Video(ToD, {50, 1});

To generate a SMPTE 2110 compliant stream, the transmission timestamp must be aligned to the video media
grid, aka “Media Clock”. The AvFifo::Tod2Grid_Video() function can perform this alignment. To be able to
do so, it needs the frame rate as an exact fraction.

2.3.8. Step 8. Assemble a Frame

 // 8. Obtain a Frame from the memory pool, and assemble a video frame in it.

 AvFifo::Frame* Frame{TxFifo.GetFrameFromMemPool(FrameSize)};

 Frame->ToD = ToD;

 Frame->RtpTime = AvFifo::St2110::Tod2Rtp_Video(ToD);

 CreateVideoFrame(Frame);

At this stage, the application needs to create a Frame with a transmission timestamp. To achieve this, first obtain
a Frame containing an embedded frame BLOB from the TxFifo’s Frame Memory Pool. Next, set the transmis-
sion and RTP timestamps and fill the BLOB with frame data using the CreateVideoFrame() function. The Frame
is now prepared and ready to be written to the TxFifo in the subsequent step.

Note
• In CreateVideoFrame(), the application needs to set Frame->NumValidBytes to the number of valid data

bytes in the Frame, which may be less than the Frame’s size.
• The Frame obtained from the Frame Memory Pool will be returned to the AvFifo implementation in the next step.

2.3.9. Step 9. Write Frame to TxFifo

 // 9. Write the newly assembled Frame to the TxFifo for transmission.

 TxFifo.Write(Frame);

TxFifo.Write() writes the Frame to the TxFifo. The transmit scheduling thread running in the AvFifo imple-
mentation examines the Frames written to the TxFifo and transmits a Frame when the current time matches the
Frame’s timestamp.

Note
• After a Frame is transmitted, it is returned to the Frame Memory Pool for recycling.

2.3.10. Step 10. Advance Time-of-Day

 // 10. Advance the time-of-day (ToD) to the next frame time, which is 20ms later.

 ToD += 20000000; // 20,000,000ns = 20ms

Advance the time-of-day (ToD) to the next frame time, which is 20ms later for the 50Hz frame rate used in this
example.

2.3.11. Step 11. Clean Up.

// 11. Clean up.

TxFifo.Stop();

TxFifo.Detach();

Dta2110.Detach();

Once the stop condition is met, stop the TxFifo, detach it from the DtDevice object, and detach the DtDevice
object from the hardware if no further actions are needed.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

11

3. AvFifo Concepts

3.1. Frame Memory Pool

The Frame Memory Pool is designed to optimize performance and minimize memory overhead in real-time
audio/video applications. Each RxFifo and TxFifo has its own dedicated Frame Memory Pool, ensuring effi-
cient resource management. The memory pool acts as a dynamic buffer, allocating memory for frames on
demand, and focuses on recycling frames to prevent constant memory allocation and deallocation.

Frames can only be allocated after the RxFifo or TxFifo is configured, so that the frame BLOB size is known.
In the transmit scenario, users request a Frame from the memory pool, fill it with data, and write it to the TxFifo.
Once transmitted, the Frame returns to the pool for reuse. In the receive scenario, the RxFifo acquires a Frame
from the memory pool when a frame is received. Users read the Frame from the RxFifo and return it to the
pool after processing.

The AvFifo API offers users an "observing pointer" to the frames while the memory pool retains ownership. The
memory pool releases allocated frames when the RxFifo or TxFifo is cleared, reconfigured, or detached from
the hardware.

3.2. Exceptions in AvFifo

3.2.1. General Philosophy

The AvFifo API uses C++ exceptions to signal exceptional conditions that may occur during operation. This
approach to error handling eliminates the need for applications to examine result codes after each API call and
allows API functions to return values in a more intuitive way.

All exception classes within AvFifo inherit from the std::exception class, providing a familiar and standardized
interface for managing errors. The std::exception class includes the what() member function, which is also
used by AvFifo exceptions to provide clear and concise error messages tailored to the specific error condition
encountered.

3.2.2. Exception Categories

AvFifo exceptions can be classified into several categories, with each category being encoded in the class from
which the exception is derived.

Derived from Meaning

std::logic_error Category of exceptions indicating that an AvFifo function has been invoked in a state
where the function may not be called, or the function receives arguments that violate
its logical preconditions.
Encountering a UsageError typically indicates a programming mistake.

std::runtime_error Category of exceptions denoting a runtime error condition.

std::bad_alloc Indicates excessive memory usage, typically resulting from allocating too much
memory for the Frame Memory Pools in the Rx/TxFifos.

std::invalid_argument Indicates that a function received an argument with a value that is outside the ex-
pected range.

3.3. Using Raw Mode

The AvFifo API features a "raw mode" that allows developers to directly access all payload bytes when receiving
or transmitting frames with RxFifo or TxFifo. This ability to interact with raw data is particularly useful when
dealing with SMPTE 2110 substandards not yet supported by AvFifo, or when experimenting with new or pro-
prieatary standards.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

12

It's important to note that IP packets are transmitted using big endian byte order, while Intel CPUs typically
process data in little endian byte order. Understanding the implications of this difference is crucial, and this
section aims to discuss the ramifications of this contrast.

3.3.1. Network Byte Order

Network communications use big-endian byte order for the transmission of IP packets, commonly referred to as
network byte order. When the AvFifo API receives IP packets, it stores the payload bytes in frames in the order
of receipt. When handling big-endian data on a little-endian CPU, byte order conversion may sometimes be
needed to correctly process the IP packet data.

RFC 791 provides a detailed description and illustration of the transmission order. It uses a type of diagram that
is used in several other RFC’s and in standards that extensively rely on RFC’s such as SMPTE 2110. The following
diagram, adapted from RFC 791, shows the bytes in order of transmission.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| byte 0 | byte 1 | byte 2 | byte 3 |

+-+

| byte 4 | byte 5 | byte 6 | byte 7 |

+-+

In this type of diagram, the leftmost bit, labeled 0, is the most significant bit. When a multi-byte integer is
transmitted, the most significant byte is transmitted first.

3.3.2. Processing IP Packets in Network Byte Order with a Little-Endian CPU

In PCs, which use little-endian CPUs, bit 0 is typically the least significant bit. By retaining the layout and rela-
beling the bit numbers in the ASCII diagrams (0→7, 7→0, 8→15, 15→8, etc.), the RFC 791 diagram style can
still be used.

For instance, the diagram above could be represented as follows on a little-endian CPU:

|7 0|15 8|22 16|31 23|

+-+

| byte 0 | byte 1 | byte 2 | byte 3 |

+-+

| byte 4 | byte 5 | byte 6 | byte 7 |

+-+

Labeling the bits in little endian order enables clarity in bit numbering. However, the byte ordering remains big
endian. If, for example, byte 1 and 2 constitute a 16-bit integer in network byte order, the high and low order
bytes should be swapped to get the same 16-bit value in little endian.

uint8_t Byte0, Byte1;

int16_t Qty16;

Qty16 = (int16_t)(Byte0 | (Byte1 << 8));

3.3.3. Example – Receiving SMPTE 2110-40 in Raw Mode

SMPTE 2110-40 addresses the transport of ancillary data, encompassing subtitles, time codes, and other
metadata. While the AvFifo API does not currently offer built-in support for receiving or transmitting
SMPTE 2110-40 data, these operations can be accomplished using raw mode.

In this section, we illustrate the utilization of raw mode for receiving SMPTE 2110-40 formatted ancillary data.
A similar approach can also be employed for transmitting ancillary data.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

13

As an example, let’s extract the line number from the ancillary header defined in SMPTE 2110-40. This header
is composed of big-endian fields and will appear in memory as follows, adopting the little-endian bit numbering
scheme discussed earlier:

|7 0|15 8|22 16|31 23|

+-+

|C| Line_Number | Horizontal_Offset |S| StreamNum |

+-+

| DID | SDID | Data_Count |

+-+

Bits 6 to 0 of byte 0 contain bits 10 to 4 of the Line Number, while byte 1 holds bits 3 to 0. The line number can
be reconstructed using the following code:

uint8_t Byte0 = PayloadData[0];

uint8_t Byte1 = PayloadData[1];

int16_t LineNumber;

LineNumber = ((int16_t)(Byte0 & 0x7F)) << 4;

LineNumber |= ((int16_t)(Byte1 & 0xF0)) >> 4;

This methodology can be extended to all fields, and also to transmission.

For the conversion of 32-bit integers between network byte order and little endian, the functions std::ntohl
and std::htonl can be used.

3.3.4. Using Bit Fields

Alternatively, C/C++ bit fields can be employed. However, note that this method is somewhat less portable due
to non-standardized allocation of bit fields, although it is compatible with both Visual Studio and gcc. Fields
must be defined per byte, starting from the least significant to the most significant bit.

struct Smpte2110_40_Header

{

 unsigned LineNumberH : 7;

 unsigned C : 1;

 unsigned HorizontalOffsetH : 4;

 unsigned LineNumberL : 4;

 unsigned HorizontalOffsetL : 8;

 unsigned StreamNum : 7;

 unsigned S : 1;

 // Etc.

};

Smpte2110_40_Header* Hdr = (Smpte2110_40_Header*)PayloadData;

int16_t LineNumber = (Hdr.LineNumberH << 4) | Hdr.LineNumberL;

This approach is considered cleaner as it reduces the need for explicit bitwise operations and value shifting,
resulting in more readable code. However, the portability of code utilizing bit fields may be compromised due
to differences in how compilers or platforms handle them.

Consider the specific requirements of your project and any portability concerns when deciding whether to use
bit fields or alternative bitwise operations.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

14

 Enumerations (namespace Dtapi::AvFifo)

enum class FifoStatus
Describes the status of an RxFifo or TxFifo.

enum class FifoStatus

{

 Ok, // No error, FIFO is operating correctly.

 DstMacResolveFail, // Failed to resolve the destination MAC address.

 LinkDown, // Network link is down.

 MulticastJoinFail, // Failed to register the multicast address.

 Unplugged // The network cable is disconnected or unplugged.

};

Values

Ok

The IP link is operational and functioning correctly.

LinkDown

The network link is completely down, possibly due to a disabled network port.

MulticastFail

There has been a failure in registering the multicast address.

ResolveFail

There has been a failure in resolving the destination MAC address, which may be due to a non-existent
IP address.

Unplugged

The network cable is disconnected or unplugged.

Remarks
• Use function FifoStatusToMessage() for translating a FifoStatus value into a human-readable string,.

This function will return a short descriptive string corresponding to the FifoStatus value.

• Always check the status of the IP link and handle different statuses appropriately in your code to ensure a
smooth network operation.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

15

enum class HwOrSwPipe
Indicates the user's preference for a software or hardware pipe.

Hardware pipes generally provide better performance and are more suitable for high-resolution video pro-
cessing. Each hardware pipe has its own dedicated DMA (Direct Memory Access) controller, which allows for
efficient and fast data transfers between the board and the system memory. In contrast, software pipes use a
single DMA controller for a multiplex of all received or transmitted streams, which may result in reduced perfor-
mance.

The number of available hardware pipes depends on the board type number. The DTA-2110, currently the only
board that supports SMPTE 2110 hardware pipes, supports 3 hardware pipes and 3 software pipes.

enum class HwOrSwPipe

{

 Auto, // DTAPI chooses a suitable pipe type.

 ForceHwPipe, // Force hardware pipe.

 PreferHwPipe, // Prefer hardware pipe, accept software pipe.

 UseSwPipe // Force a software pipe.

};

Values

Auto

DTAPI chooses a suitable pipe type.

ForceHwPipe

Forces the usage of a hardware pipe.

PreferHwPipe

Prefers the usage of a hardware pipe, but accepts a software pipe if no hardware pipe is available.

UseSwPipe

Use software pipe, bypassing any available hardware pipes.

Remarks

For handling audio and ancillary data, it is recommended to use a software pipe, as these types of data generally
have lower bandwidth requirements compared to high-resolution video data. By delegating audio and ancillary
data processing to software pipes, you can reserve the hardware pipes for more demanding video processing
tasks, thus ensuring efficient utilization of the available resources on the board.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

16

enum IpProtocolVersion
Enumerates the available IP protocol versions supported by the A/V FIFO interface.

enum class IpProtocolVersion

{

 IPv4, // IP protocol version 4 - 32-bit addresses.

 IPv6 // IP protocol version 6 - 128-bit addresses.

};

Values

IPv4

IP protocol version 4. IPv4 uses 32-bit addresses.

IPv6

IP protocol version 6. IPv6 uses 128-bit addresses. In addition to a larger address space, IPv6 also includes
improvements to security, quality of service (QoS), and other enhancements compared to IPv4.

Remarks

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

17

enum IpTransportProtocol
Selects between RTP-over-UDP and plain UDP without RTP.

enum class IpTransportProtocol

{

 Rtp, // RTP-over-UDP.

 Udp // UDP. Data is encapsulated in UDP without RTP.

};

Values

Rtp

RTP-over-UDP transport protocol.

Udp

Plain UDP transport protocol without RTP.

Remarks

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

18

enum RxFifoOverflowStrategy
Enumerates different strategies to manage situations in which the AvFifo API receives a frame while the RxFifo
is already at maximum capacity, unable to store additional frames.

enum class RxFifoOverflowStrategy

{

 DropFrame, // When the RxFifo is full: Drop the received frame.

 ThrowException // When the RxFifo is full: Throw exception.

};

Values

DropFrame

Indicates a ‘strategy’ to discard the most recently received frame when the RxFifo is full. This strategy is
suitable for applications that can withstand occasional loss of frames. For instance, it could be useful in
viewer or multiviewer applications, where occasional frame loss does not significantly disrupt the user
experience.

ThrowException

Indicates a ‘strategy’ to throw an exception when the RxFifo is full while a new frame has been received.
The exception is not immediately thrown at the time of overflow, but rather at the first subsequent user
call to the RxFifo::GetStatus() method. This strategy is intended for real-time applications where
dropping a frame could disrupt processing and lead to synchronization issues. Normally, overflow should
not occur in such applications. If an overflow does occur, this strategy allows for immediate detection and
suggests that the application should be restarted to regain synchronized processing.

Remarks
• The DropFrame strategy is appropriate for applications where the occasional loss of frames is acceptable.

The ThrowException strategy is more suitable for real-time applications that can't afford to lose frames.

• In either case, it is crucial to implement measures to mitigate the impact of the selected strategy on your
application. If the DropFrame strategy is used, consider notifying the user when a frame has been dropped.
With the ThrowException strategy, ensure your application has sufficient exception handling mechanisms
in place to prevent abrupt terminations and to handle the restart process smoothly.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

19

enum St2022::FecMode
Specifies the operating mode of SMPTE 2022-1 Forward Error Correction (FEC) for a stream, indicating whether
it is enabled or disabled. FEC appends error-correction bytes to the transmitted data, enabling the receiver to
detect and correct transmission errors, thus enhancing communication reliability and robustness.

enum class FecMode

{

 Disable, // FEC is disabled.

 Enable // FEC is enabled: Tx adds FEC bytes; Rx: decodes FEC

 // bytes if present and corrects data as needed.

};

Values

Disabled

Indicates FEC is disabled. No SMPTE 2022-1 FEC bytes will be added during transmission. On reception,
FEC data, even if present, will not be decoded.

Enabled

Indicates FEC is enabled, allowing the stream to utilize SMPTE 2022-1 FEC's error detection and correction
capabilities. With FEC enabled, FEC bytes are added during transmission, and during reception FEC bytes
are decoded and data is corrected as needed.
Note that enabling SMPTE 2022-1 FEC is not supported in the current version of DTAPI.

Remarks

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

20

enum St2022::LinkMode
Enumerates the SMPTE 2022-7 link modes, allowing the selection between a single link and dual-link mode.
The dual-link mode provides “seamless protection switching”, ensuring high reliability and redundancy in the
transmission of professional media streams over IP networks.

enum class LinkMode

{

 Single, // Single link mode, uses a single network path.

 Dual, // SMPTE 2022-7 dual-link mode, provides redundancy.

};

Values

Single

Single link mode, where the stream is transmitted over a single network path. This mode offers simplicity
and lower overhead but lacks redundancy, making it more vulnerable to network failures and other issues.

Dual

SMPTE 2022-7 dual-link mode, which uses two separate network paths for data transmission. This mode
offers redundancy and seamless protection switching, allowing the receiver to switch between the two
paths without interrupting the media stream. This ensures high reliability and resilience to network issues.

Remarks

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

21

enum St2110::AudioFormat
Enumerates the supported SMPTE 2110 audio formats, providing options for different bit depths and byte orders
of Pulse Code Modulation (PCM) audio, as well as raw audio data.

enum class AudioFormat

{

 L16BE, // 16-bit PCM, big endian byte order.

 L24BE, // 24-bit PCM, big endian byte order.

 Raw

};

Values

L16BE

Indicates 16-bit PCM audio with a big endian byte order.

L24BE

Indicates 24-bit PCM audio with a big endian byte order. This format offers higher audio quality and
dynamic range compared to 16-bit PCM, at the cost of increased data size.

Raw

Indicates raw audio data without any specific formatting, providing flexibility for handling custom or non-
standard audio formats.
When working with raw audio data, additional processing or conversion may be necessary to interpret or
process the audio correctly.

Remarks

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

22

enum St2110::PackingMode
Enumerates the SMPTE 2110 video packing modes.

enum class PackingMode

{

 General, // Only pgroup size restriction.

 Block // Each packet must contain a multiple of 180 bytes.

};

Values

General

In the General packing mode, there are no specific restrictions on the packet size, except that it must
adhere to the packet group (pgroup) size limitation. This mode offers flexibility in packet size.

Block

In the Block packing mode, each packet must contain a multiple of 180 bytes. This mode ensures a
consistent and predictable packet size.

Remarks

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

23

enum St2110::RxFrameFormat
Enumerates the supported pixel formats for incoming SMPTE 2110 video.

Used to specify the pixel format on the line when configuring the AvFifo::RxFifo, so that AvFifo can assume
that the video has the specified format.

enum class RxFrameFormat

{

 Raw, // Raw underlying format without any conversion.

 Uyvy422_8b, // 8-bit UYVY packed pixel format.

 Uyvy422_10b, // 10-bit packed UYVY pixel format.

 Uyvy422_10b_to_8b, // 10-bit packed UYVY converted to 8-bit UYVY.

 Yuv422p_8b // 8-bit planar YUV (3 planes: Y,U,V).

};

Values

Raw

Specifies that the raw video data without any conversion should be put in the RxFifo.

Uyvy422_8b

Specifies an 8-bit UYVY packed pixel format, where the chroma and luma components are interleaved.

Uyvy422_10b

Specifies a 10-bit packed UYVY pixel format with higher color depth compared to the 8-bit format.

Uyvy422_10b_to_8b

Represents a 10-bit packed UYVY pixel format on the line. When the video data is received by the RxFifo,
it is first converted to an 8-bit UYVY format by DTAPI, for faster and more convenient processing.

Yuv422p_8b

Specifies an 8-bit planar YUV format with separate planes for Y, U, and V components.

Remarks

The St2110::RxFrameFormat enumeration specifies the pixel format of incoming SMPTE 2110 video streams.
This ensures that AvFifo::RxFifo processes the video data using the correct format.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

24

enum St2110::Scheduling
Enumerates the SMPTE 2110 packet scheduling method.

enum class Scheduling

{

 Linear, // Packets are transmitted evenly spaced in time.

 Gapped // Packets are sent with variable gaps between them.

};

Values

Linear

In the Linear scheduling method, packets are transmitted at evenly spaced time intervals. This approach
ensures a consistent and predictable transmission rate.

Gapped

In the Gapped scheduling method, packets are transmitted with variable gaps between them. This ap-
proach allows for more flexibility in packet transmission.

Remarks

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

25

enum St2110::TxFrameFormat
Enumerates the supported pixel formats for transmitting SMPTE 2110 video. The AvFifo::TxFifo class assumes
that the video frame data supplied by the application adheres to one of these formats.

enum class VideoScanning

{

 Uyvy422_8b, // 8-bit UYVY pixel format.

 Uyvy422_10b // 10-bit packed UYVY pixel format.

};

Values

Uyvy422_8b

Specifies an 8-bit UYVY packed pixel format, where the chroma and luma components are interleaved.

Uyvy422_10b

Specifies a 10-bit packed UYVY pixel format with higher color depth compared to the 8-bit format.

Remarks

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

26

enum St2110::VideoScanning
Enumerates the supported video scanning modes for received and transmitted video.

enum class VideoScanning

{

 Progressive, // Full frames, no separation in odd and even lines.

 Interlaced, // Alternating odd lines of a frame are placed in a

 // field, followed by a field with the even lines of

 // the next frame.

 PsF // Each frame is split into 2 fields, one containing

 // odd lines, another containing even lines.

};

Values

Progressive

Each frame is transmitted in its entirety.

Interlaced

The odd lines of a frame are placed in a field, followed by placing the even lines of the next frame in the
next field. This alternates between odd and even lines of consecutive frames.

PsF

Progressive video is transmitted as Interlaced video, but with double the field rate. Each frame is split into
two fields, one containing the odd lines, and another containing the even lines.

Remarks

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

27

 Exceptions (namespace Dtapi::AvFifo)

Exceptions
The AvFifo exception classes are all derived from the exceptions defined in the C++ standard library (std).

class DriverError : public std::runtime_error { … };

class HardwarePipeUnavailable: public std::runtime_error { … };

class InvalidFormatError: public std::runtime_error { … };

class OverflowError : public std::runtime_error { … };

class SchedulingError : public std::runtime_error { … };

class UsageError : public std::logic_error { … };

class bad_alloc : public std::exception { … };

class invalid_argument : public std::logic_error { … };

const char* Exception::what() const noexcept;

Exceptions

Exception Derived from std:: Meaning

DriverError runtime_error Occurs when the AvFifo implementation calls the network or PCIe
driver, signaling an issue with the driver. To resolve, check driver
version and update if necessary.

HardwarePipe

Unavailable

runtime_error Signals that a hardware pipe is unavailable, potentially because all
hardware pipes are currently in use by this or other processes.

InvalidFormatError runtime_error Occurs when a user writes a Frame to the TxFifo with a format

that doesn't comply with the configured format. This points to an
error in the code creating Frames.

OverflowError runtime_error Occurs when the AvFifo receive thread has a new Frame available,
but the RxFifo has reached its maximum capacity. Since the re-

ceive thread cannot throw exceptions, this error is signaled from
RxFifo::GetStatus().

SchedulingError runtime_error Occurs when the AvFifo transmit thread encounters an invalid
timestamp that is too far in the future or the past. Since the trans-
mit thread cannot throw exceptions, this error is signaled from
TxFifo::GetStatus().

UsageError logic_error Occurs when an AvFifo function is called in an inappropriate state
or receives arguments that violate its preconditions, typically indi-
cating a programming mistake.

Standard Library Exceptions

bad_alloc exception Occurs when a memory allocation request fails, typically caused by
using too much memory for the Frame Memory Pools in the
Rx/TxFifos.

invalid_argument logic_error Occurs when an AvFifo method receives an argument with an in-
appropriate or invalid value.

Members

what()

Returns a C-style string representing a human-readable error message describing the exception.

Remarks
• All AvFifo exceptions are derived from std::exception and support the what() function.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

28

 Structs (namespace Dtapi::AvFifo)

struct BlobMetadata
Encapsulates metadata needed for allocating frame BLOBs. This metadata is used by RxFifo and TxFifo ob-
jects whenever a new frame needs to be allocated. The struct provides parameters for setting alignment and
additional space requirements for the BLOB.

struct BlobMetadata

{

 int Alignment{32}; // Address alignment (e.g. 32 = 32-byte alignment).

 int ExtraSize{0}; // Extra bytes allocated at the end of the BLOB.

};

Members

Alignment

Sets the alignment of the start address of the frame BLOB. The alignment is defined as the number of
bytes to which the start address of the BLOB must align. For instance, an alignment of 32 means that the
BLOB's start address will be a multiple of 32 bytes. The alignment value must be a power of 2.

ExtraSize

Defines the additional number of bytes that should be allocated at the end of the BLOB. This extra space
is typically utilized to facilitate algorithms that process data in groups of pixels, e.g. with SSE/AVX instruc-
tions. By allocating extra bytes, these algorithms can safely operate without the risk of accessing or over-
flowing into memory space beyond the allocated BLOB. ExtraSize defaults to zero, indicating no addi-
tional bytes are allocated by default.

Remarks
• BlobMetadata enables customized memory management for frame BLOBs. It's crucial to correctly set

Alignment and ExtraSize to ensure efficient and safe memory operations.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

29

struct ExactRatio
Represents an exact rational number as a fraction with a numerator and a denominator. It's useful for precise
representation and manipulation of fractional frame rates, such as 29.97 (represented exactly as 30000/1001),
and helps avoiding rounding errors from floating-point approximations.

struct ExactRatio

{

 int Numerator{-1}; // Represents the numerator of the rational number.

 int Denominator{-1}; // Represents the denominator of the rational number.

};

// Alias 'FrameRate' to 'Ratio' for representing video frame rates as exact

// rational numbers.

using FrameRate = ExactRatio;

Members

Numerator

Stores the integer value of the numerator part of the rational number.

Denominator

Stores the integer value of the denominator part of the rational number.

Remarks
• Using ExactRatio helps preventing synchronization issues over time by providing exact fractional frame rate

representations, avoiding floating-point approximations.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

30

struct IpPars
Defines IP parameters for transmission or reception of SMPTE 2110 and SMPTE 2022 streams, including IP
address, port, and various optional settings to customize and optimize communication.

struct IpPars

{

 array<uint8_t, 16> IpAddr{}; // IPv4 or IPv6 address.

 IpProtocolVersion IpVersion{IPv4}; // IP protocol version.

 int Port{-1}; // IP port number.

 vector<IpSrcFlt> SrcFlt{}; // Optional SSM filter.

 int DiffServ{34 << 2}; // Differentiated service field.

 array<uint8_t, 16> Gateway{}; // Optional gateway address.

 int RtpPayloadType{0}; // RTP payload packet type.

 int TimeToLive{64}; // Time to live (TTL) value.

 IpTransportProtocol TransportProtocol{Udp};

 struct {

 int Id{0}; // ID for network segmentation.

 int Priority{0}; // Priority for traffic prioritization.

 } Vlan; // VLAN parameters.

};

Members

IpAddr

Holds the IP address, either IPv4 or IPv6.

IpVersion

Specifies the IP protocol version, either IPv4 or IPv6.

Port

Defines the IP port number.

SrcFlt

Optional source-specific multicast (SSM) filter to manage incoming multicast traffic. The filter consists of
a vector of IP addresses/port numbers to choose which sources are allowed.

DiffServ

Sets the Differentiated Services Field (DS Field) value for Quality of Service (QoS) purposes.

Gateway

Optional gateway address for routing purposes.

RtpPayloadType

Defines the payload type that will be set in the RTP packet.

TimeToLive

Specifies the Time to Live (TTL) value for IP packets during transmission.

TransportProtocol

Indicates the transport protocol to be used, either UDP or RTP.

Vlan

Contains VLAN parameters, including the VLAN ID and priority for network segmentation and traffic
prioritization.

Remarks

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

31

struct IpSrcFilt
Defines the address filter for source-specific multicast, allowing control over incoming multicast traffic based on
the source IP address and port.

struct IpSrcFilt

{

 array<uint8_t, 16> IpAddr{}; // 4 or 16 address bytes representing

 // the IPv4 or IPv6 source address.

 int Port{-1}; // Source port number for filtering.

};

Members

IpAddr

Holds the source IP address for the multicast traffic filter. The array can contain either 4 bytes for an IPv4
address or 16 bytes for an IPv6 address.

Port

Specifies the source port number for filtering the multicast traffic. By setting a specific port, the filter will
only allow multicast traffic from the source IP address and the specified port.

Remarks

Utilizing the IpSrcFilt struct, you can define a source-specific multicast (SSM) filter to enhance control over in-
coming multicast traffic. SSM allows you to accept data exclusively from specific sources, based on the source IP
address and port number.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

32

struct RxStatistics
Stores reception statistics as a structure containing several counter values.

struct RxStatistics

{

 int FramesOk{0}; // Number of correctly received frames.

 int FramesIncomplete{0}; // Number of frames with missing IP packets.

 int FramesSizeError{0}; // Number of frames with unexpected size.

 int Gaps{0}; // Number of discontinuities in complete frames.

 int IpPacketErrors{0}; // Number of IP packets with corrupted headers.

 int DroppedFrames{0}; // Number of dropped frames due to FIFO full.

 int SyncErrors{0}; // Number of out-of-sync errors.

};

Members

FramesOk

Counts the number of correctly received frames.

FramesIncomplete

Counts the number of frames with missing IP packets.

FramesSizeError

Counts the number of frames with unexpected size.

Gaps

Counts the number of frames with discontinuities in the RTP sequence numbers at the start of a new frame
(after a frame end is detected).

IpPacketErrors

Counts the number of IP packets with an unrecognized header or with a syntax error in the header.

DroppedFrames

Counts the number of frames dropped because the receive FIFO was full.

SyncErrors

Counts the number of out-of-sync errors.

Remarks

All statistics will be reset when the RxFifo::Start function is called. This ensures that the statistics only reflect
the data received since the last time the RxFifo was started, providing an accurate characterization of the current
reception process.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

33

struct TxStatistics
Stores reception statistics as a structure containing several counter values.

struct TxStatistics

{

 int FramesOk{0}; // Number of frames transmitted.

};

Members

FramesOk

Counts the number of transmitted frames.

Remarks

All statistics will be reset when the TxFifo::Start function is called. This ensures that the statistics only reflect
the data received since the last time the TxFifo was started, providing an accurate characterization of the current
reception process.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

34

struct VideoSize
Represents the dimension of a video signal in number of pixels.

struct VideoSize

{

 int Width{-1}; // The width of the video, in pixels.

 int Height{-1}; // The height of the video, in pixels.

};

Members

Width

The width of the video, in pixels. Initialized to -1 to indicate that it hasn't been set yet.

Height

The height of the video, in pixels. Initialized to -1 to indicate that it hasn't been set yet.

Remarks

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

35

struct YuvPlanes
Contains pointers and sizes for 8-bit 4:2:2 YUV formatted video data in a Frame, assuming that the video format
is RxFrameFormat::Yuv422p_8b. This struct is returned by Frame::Yuv422P_8b_GetPlanes.

struct YuvPlanes

{

 uint8_t* Y{nullptr}; // Pointer to the Y plane (luminance).

 uint8_t* U{nullptr}; // Pointer to the U plane.

 uint8_t* V{nullptr}; // Pointer to the V plane.

 int SizeY{0}; // Size of the Y plane in bytes.

 int SizeU{0}; // Size of the U plane in bytes.

 int SizeV{0}; // Size of the V plane in bytes.

};

Members

Y

A pointer to the start of the Y plane, which contains luminance samples.

U

A pointer to the start of the U plane, which contains chrominance samples representing the blue color
difference.

V

A pointer to the start of the V plane, which contains chrominance samples representing the red color
difference.

SizeY

The size of the Y plane in bytes, indicating the amount of memory allocated for the luminance data.

SizeU

The size of the U plane in bytes, indicating the amount of memory allocated for the blue color difference
(U) data.

SizeV

The size of the V plane in bytes, indicating the amount of memory allocated for the red color difference
(V) data.

Remarks

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

36

struct St2022::RxConfig
Configures the reception of an ST2022-5/6 stream.

struct RxConfig

{

 bool EnableFecDecoding{false}; // Enables FEC decoding.

 struct {

 IpPars IpParsLink2; // IP parameters for redundant link if

 // ST2022-7 mode is 'Dual'.

 LinkMode Mode{Single}; // Single or dual link.

 DtIpProfile Profile; // Maximum bitrate and maximum skew.

 } St2022_7;

};

Members

EnableFecDecoding

Enables or disables FEC decoding. If false, FEC decoding is disabled even if FEC packets are present.

IpParsLink2

IP parameters for the redundant link if ST2022-7 Mode is LinkMode::Dual. Note that parameters of the
main link can be specified with RxFifo::SetIpPars.

Mode

Single link (no network redundancy), or dual link (network redundancy).

Profile

Configuration: Maximum bitrate and maximum skew between path 1 and path 2.

Remarks

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

37

struct St2022::TxConfig
Configures the transmission of an SMPTE 2022-5/6 stream.

struct TxConfig

{

 int VideoStandard{-1}; // DTAPI_VIDSTD_...

 int TrOffset{-1}; // PTP transmit time offset.

 int PayloadSize{-1};

 St2022::FecMode FecMode{Disable}; // Add FEC bytes?

 struct {

 IpPars IpParsPath2; // IP parameters for redundant link.

 LinkMode Mode{Single}; // Single or dual link mode.

 } St2022_7; // SMPTE 2022-7 parameters.

};

Members

VideoStandard

Specifies the video standard to be encoded, see the DTAPI_VIDSTD_... definitions.

TrOffset

The PTP (Precision Time Protocol) transmit time offset with respect to the most recent integer multiple of
the time period between consecutive frames of video at the prevailing frame rate, starting from the EPOCH
time.
If the value is -1, a default value is used.

PayloadSize

Specifies the size of the payload for the SMPTE 2022 stream. If the value is -1, the default size is used.

FecMode

Configures the Forward Error Correction (FEC) mode for the transmission. Possible values are defined in
the St2022::FecMode enumeration.

St2022_7

Contains the SMPTE 2022-7 parameters, including:

IpParsPath2

Specifies the IP parameters for the redundant link when the SMPTE 2022-7 mode is set to 'Dual'.

Mode

Determines the link mode for the SMPTE 2022-7 transmission. Possible values are defined in the
St2022::LinkMode enumeration: Single or Dual.

Remarks

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

38

struct St2110::RxConfigAudio
Configures the reception parameters of an SMPTE 2110 audio stream.

struct RxConfigAudio

{

 AudioFormat Format{Raw}; // Specifies the audio format.

 int SampleRate{48000}; // Defines the audio sample rate in Hz.

};

Members

Format

Represents the audio format used for the SMPTE 2110 audio stream. It can be one of the following: 16-bit
PCM, 24-bit PCM, or raw. The default value is set to AudioFormat::Raw.

SampleRate

Defines the audio sample rate for the SMPTE 2110 audio stream, expressed in Hertz (Hz). The default
sample rate is set to 48,000 Hz.

Remarks

The St2110::RxConfigAudio struct is used to set up and configure the reception parameters for an
SMPTE 2110 audio stream.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

39

struct St2110::RxConfigRaw
Configures the parameters for the reception of raw SMPTE 2110 payload data using Frame structs. It facilitates
a flexible interface for raw data extraction, so that users have access to all data fields. Optionally, the raw frame
data can include the RTP header.

struct RxConfigRaw

{

 bool IncludeRtpHeader{false}; // RTP header included in payload?

 int MaxRate{-1}; // Max expected rate (bytes per second).

};

Members

IncludeRtpHeader

Determines whether the RTP header will be included in the frame data.

MaxRate

Specifies the maximum expected data rate, in bytes per second. This rate is used to set the default size of
the shared buffer. Users are required to replace the default value of -1 with a valid rate; failure to do so
will result in an error.

Remarks
• The RxConfigRaw struct is constructed for usage scenarios that require direct access to raw SMPTE 2110

data.

• Raw mode can be used to receive SMPTE 2110-40 ancillary data. Refer to §3.3 for an explanation and
example of the usage of raw mode.

• Proper configuration of the MaxRate field is crucial to correctly dimension the shared buffer.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

40

struct St2110::RxConfigVideo
Configures the parameters for receiving an SMPTE 2110 video stream.

struct RxConfigVideo

{

 RxFrameFormat Format{Raw}; // Specifies the video format.

};

Members

Format

Represents the pixel format of the incoming SMPTE 2110 video stream. It can be one of the following: 8-
bit UYVY, 10-bit packed UYVY, 10-bit packed UYVY converted to 8-bit UYVY, or the raw underlying format
without any conversion. The default value is set to RxFrameFormat::Raw.

Remarks

The St2110::RxConfigVideo struct is used to set up and configure the parameters for receiving an SMPTE
2110 video stream through a RxFifo (RxFifo).

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

41

struct St2110::TxConfigAudio
Configures the parameters for transmitting an SMPTE 2110 audio stream.

struct TxConfigAudio

{

 AudioFormat Format{L16BE}; // Audio format.

 int NumChannels{2}; // Number of channels.

 int NumSamplesPerIpPacket{-1}; // Number of samples per IP packet.

 int SampleRate{48000}; // Defines the audio sample rate in Hz.

};

Members

Format

Defines the audio format used for the SMPTE 2110 audio stream. It can be one of the following: 16-bit
PCM, 24-bit PCM, or raw. The default value is set to AudioFormat::Raw.

NumChannels

Defines the number of audio channels. The default value is 2 for stereo audio.

NumSamplesPerIpPacket

Defines the number of samples packaged per IP packet.

SampleRate

Defines the audio sample rate for the SMPTE 2110 audio stream, expressed in Hertz (Hz). The default
sample rate is set to 48,000 Hz.

Remarks

The St2110::TxConfigAudio struct is used to set up and configure the transmission parameters for an SMPTE
2110 audio stream.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

42

struct St2110::TxConfigRaw
Configures the parameters for transmitting raw SMPTE 2110 payload data. This mode gives users the flexibility
to fully customize the contents of the payload. Users can choose to supply their own RTP header or allow the
AvFifo API to generate it automatically.

struct TxConfigRaw

{

 bool CustomRtpHeader{false}; // RTP header in payload?

 int MaxRate{-1}; // Maximum rate in bytes per second.

};

Members

CustomRtpHeader

Indicates whether a custom RTP header will be included in the payload data. When set to true, the user is
obligated to provide an RTP header as part of the frame data.

MaxRate

Specifies the maximum rate that will be transmitted in bytes per second. This value is used for configuring
the default size of the shared buffer. The default value of -1 must be replaced by a valid rate, otherwise
an error will be generated.

Remarks
• The TxConfigRaw struct is designed for advanced usage scenarios where complete control over payload

content, possibly including a custom RTP header, is required.

• Raw mode can be used to transmit SMPTE 2110-40 ancillary data. Refer to §3.3 for an explanation and
example of the usage of raw mode.

• When CustomRtpHeader is set to true, the user assumes responsibility for supplying a suitable RTP header
as part of the frame data to be transmitted.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

43

struct St2110::TxConfigRawVideo
Configures the parameters for transmitting raw SMPTE 2110 video. The TxConfigRawVideo structure lets you
control all aspects of video transmission, including active video ratio, chroma subsampling, frame dimensions,
packing parameters, pixel groups, row size, timing parameters, and PTP transmit time offset.

struct TxConfigRawVideo

{

 Ratio ActiveVideo{}; // Active video time relative to total line time.

 bool Is420{false}; // 4:2:0 chroma subsampling?

 int NumRows{-1}; // Total number of rows in a frame.

 VideoPacking Packing{}; // Packet packing parameters.

 struct {

 int NumBytes{-1}; // Number of bytes in a ST2110-20 pgroup.

 int NumPixels{-1}; // Number of pixels in a ST2110-20 pgroup.

 } PGroup;

 int RowSize{-1}; // Total number of bytes in a row.

 VideoTiming Timing{}; // Video timing parameters.

 int TrOffset{-1}; // PTP transmit time offset.

};

Members

ActiveVideo

Specifies the active video time relative to the total line time. This parameter determines the proportion of
active video data within each transmitted line.

Is420

Specifies whether 4:2:0 chroma subsampling is to be used for video transmission.

NumRows

Specifies the total number of rows in a video frame. This parameter defines the vertical resolution of the
transmitted video.

Packing

Specifies the packet packing parameters, with constraints on packet contents, packing mode, and payload
size.

PGroup

A structure with two integer members, NumBytes and NumPixels, which represent the number of bytes
and pixels in a ST2110-20 pixel group (pgroup), respectively.

RowSize

Specifies the total number of bytes in a row of video data.

Timing

Specifies the video timing parameters, such as frame rate, packet scheduling method, and scanning
mode.

TrOffset

Specifies the PTP (Precision Time Protocol) transmit time offset with respect to the most recent integer
multiple of the time period between consecutive frames of video at the prevailing frame rate, starting from
the EPOCH time.
If the value is -1, a default value is used.

Remarks

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

44

struct St2110::TxConfigVideo
Configures the parameters for transmitting SMPTE 2110 video.

struct TxConfigVideo

{

 TxFrameFormat Format{Uyvy422_10b};

 VideoPacking Packing; // Video packing parameters.

 VideoSize Resolution; // Resolution of the active video.

 VideoTiming Timing; // Video timing parameters.

};

Members

Format

Specifies the video frame format. The default value is TxFrameFormat::Uyvy422_10b, which represents a
10-bit UYVY 4:2:2 format. Other supported formats can be found in the St2110::TxFrameFormat enu-
meration.

Packing

Specifies the packing parameters for the video frames. These parameters include the storage layout and
organization of pixel data within the video frame.

Resolution

Sets the resolution of the active video. The VideoSize structure contains width and height values, speci-
fying the dimensions of the video frame in pixels.

Timing

Configures the video timing parameters. These parameters include frame rate, interlacing, and synchro-
nization details, ensuring the proper display and synchronization of the transmitted video.

Remarks

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

45

struct St2110::VideoPacking
Specifies the SMPTE 2110 video packing parameters.

struct VideoPacking

{

 bool OneLinePerPacket{false}; // Only allow data from a single line

 // in one packet.

 St2110::PackingMode PackingMode{General};

 int PayloadSize{-1}; // Specifies the payload size used.

};

Members

OneLinePerPacket

When set to true, restricts data to one line per packet. This ensures that each packet only contains data
from a single line, simplifying processing.

PackingMode

Determines the video packing mode to be used. Available options are General (flexible packet size,
adhering to packet group size limitations) and Block (packets must contain a multiple of 180 bytes).

PayloadSize

Specifies the payload size used in the video packets. A value of -1 indicates that the payload size will be
automatically set to a reasonable size.

Remarks

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

46

struct St2110::VideoTiming
Configures the timing aspects of SMPTE 2110 video transmission.

struct VideoTiming

{

 FrameRate Rate; // Frame rate; field rate for Interlaced/PsF.

 St2110::Scheduling Scheduling{Gapped};

 St2110::VideoScanning VideoScanning{Progressive};

};

Members

Rate

Specifies the frame rate for progressive scanning modes, or the field rate for interlaced or PsF scanning
mode. This parameter is crucial for determining the timing and synchronization of video transmission.

Scheduling

Defines the packet scheduling method to be used. Available options are Linear (evenly spaced packet
transmission) and Gapped (variable gaps between packet transmissions).

VideoScanning

Sets the scanning mode for the video transmission. Options include Progressive, Interlaced, and PsF
(progressive segmented frame).

Remarks

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

47

 Frame (namespace Dtapi::AvFifo)

Frame public members
Represents a timestamped binary large object (BLOB) in a media stream, which serves as the fundamental unit
of data for both receiving and transmitting video, audio, or ancillary data through the A/V FIFO interface.

Important Note – For progressive video, a Frame object represents a complete video frame. However, for
interlaced or PsF (Progressive Segmented Frame) video, a Frame object represents a single video FIELD in-
stead.

struct Frame

{

 uint32_t RtpTime{0}; // RTP timestamp assigned to RTP packets of the frame.

 DtTimeOfDay ToD{}; // Time-of-day of the first sample of the frame.

 uint8_t* Data{nullptr} const; // BLOB containing the actual frame/field data.

 int Field{0}; // Video only: field indication for Interlaced/PsF.

 int NumValidBytes{0}; // Number of valid bytes in the frame-data BLOB.

 size_t Size() const; // Gets BLOB size in bytes (excl. oversizing).

 // Helper functions meaningful only when SMPTE 2110 video frames are received.

 bool Is420() const; // Is 4:2:0 chroma subsampling used?

 int NumRows() const; // Gets total number of rows in a video frame.

};

Members

RtpTime

Indicates the RTP timestamp assigned to RTP packets of the frame.

ToD

Indicates the time-of-day of the first sample of the frame.

Data

Points to the actual frame/field data as a BLOB.

Field

Indicates, for video frames with scanning mode Interlaced or PsF, whether this data is the first field (0) or
the second field (1).

NumValidBytes

Indicates or specifies the number of valid bytes in the frame-data BLOB. The size of the frame BLOB may
be larger, to accommodate frames of the same size but with varying odd and even field sizes.

Size()

Returns the frame BLOB's size in number of bytes, excluding any oversizing that was specified in the
BlobMetadata allocator metadata.

Is420()

Returns whether 4:2:0 chroma subsampling is used. Relevant only when receiving SMPTE 2110 video
frames.

NumRows()

Returns the total number of rows in a video frame. Relevant only when receiving SMPTE 2110 video
frames.

Remarks

Memory management for frame data must be performed manually. When reading a Frame using RxFifo, the
ownership of the frame data is transferred from the library to the user application. Once the application has
processed the Frame, it should return ownership by calling RxFifo::ReturnToMemPool.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

48

To transmit a Frame, the user application should first request empty frame memory by invoking
TxFifo::GetFrameFromMemPool and then write the frame data into the obtained Frame. When the frame is
written to TxFifo, its ownership will be transferred to the TxFifo instance.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

49

Frame::Yuv422P_8b_GetPlanes
Obtains pointers and sizes for 8-bit 4:2:2 YUV formatted video data in a Frame.

This function assumes that the video format is RxFrameFormat::Yuv422p_8b. It calculates pointers to the Y
(luminance), U- and V-plane data within the frame and determines the sizes in bytes for each respective plane.

YuvPlanes Frame::Yuv422P_8b_GetPlanes();

Parameters
None.

Return Value
The plane pointers and plane sizes are returned in a YuvPlanes struct.

Remarks

By calling Frame::Yuv422P_8b_GetPlanes(), users can easily access the YUV planes and their sizes for further
processing or analysis of 8-bit 4:2:2 YUV formatted video frames.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

50

 RxFifo (namespace Dtapi::AvFifo)

RxFifo::Attach
Attaches an RxFifo object to a specified DekTec device and port.

void Attach

(

 const DtDevice& Device, // DekTec device to attach to.

 int Port, // Port number (1-based) to attach to.

 HwOrSwPipe Pref=Auto // Prefer hardware or software pipe?

);

Parameters

Device

Specifies the DekTec device to attach the RxFifo to. The device must be attached to the hardware, otherwise
attaching the RxFifo will fail.

Port

Specifies the device’s port number (1-based) to attach the RxFifo to.

Pref

Indicates the user's preference for a hardware or software pipe.

Value Meaning

HwOrSwPipe::Auto DTAPI chooses suitable pipe type.

HwOrSwPipe::ForceHwPipe Force hardware pipe, throw an exception if none is available.

HwOrSwPipe::PreferHwPipe Prefer hardware pipe, but accept a software pipe as second choice.

HwOrSwPipe::UseSwPipe Use software pipe.

Return Value
None.

Exceptions

Exception Meaning

UsageError Attaching the RxFifo to the device object will fail if the device object is not at-
tached to the hardware.

DriverError A fatal error occurred while accessing the DtPcie PCIe device driver or the
DtaNw network driver.

Remarks
• If a preference for a hardware pipe is specified (ForceHwPipe), and no hardware is available, no exception

will be raised. Instead, the exception will be thrown when executing RxFifo::Start().

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

51

RxFifo::Clear
Empties the RxFifo and the Frame Memory Pool, releasing all memory resources associated with the RxFifo.

void Clear();

Parameters
None.

Return Value
None.

Exceptions

Exception Generated when

UsageError RxFifo not started with RxFifo::Start().

Remarks
• The RxFifo::Clear() function cannot be called if the RxFifo is already started.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

52

RxFifo::Configure
A set of overloaded functions used to configure the RxFifo. The appropriate function overload is called depend-
ing on the configuration parameter type provided.

void Configure

(

 const St2022::RxConfig& Config // SMPTE 2022 configuration.

 BlobMetadata& Metadata // Frame BLOB alignment metadata.

);

void Configure

(

 const St2110::RxConfigRaw& Config // SMPTE 2110 raw data configuration.

 BlobMetadata& Metadata // Frame BLOB alignment metadata.

);

void Configure

(

 const St2110::RxConfigAudio& Config // SMPTE 2110 audio configuration.

 BlobMetadata& Metadata // Frame BLOB alignment metadata.

);

void Configure

(

 const St2110::RxConfigVideo& Config // SMPTE 2110 video configuration.

 BlobMetadata& Metadata // Frame BLOB alignment metadata.

);

Parameters

Config

Represents the configuration parameters. The specific parameter type determines which function overload
is called.

Metadata

Metadata that governs the alignment and number of extra bytes allocated when a new frame BLOB must
be allocated.

Return Value
None.

Exceptions

Exception Generated when

UsageError This exception is thrown under the following conditions:
• If the RxFifo is not currently attached to the hardware.

• If the RxFifo is already started.

Remarks
• The RxFifo must be configured before starting it.

• Configuring the RxFifo also clears it.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

53

RxFifo::Detach
Detaches an RxFifo object from the hardware. Releases all resources that were associated with the RxFifo.

void Detach();

Parameters

Return Value
None.

Remarks

All resources related to the RxFifo are released.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

54

RxFifo::GetFifoLoad
Retrieves the current number of frames in the RxFifo.

If the RxFifo has been started, this method also checks if the receive thread has been unable to write a received
Frame to the RxFifo because it had encountered its maximum capacity. If this condition was detected, an
OverflowError is thrown.

int GetFifoLoad() const;

Parameters

Return Value
The current FIFO load, expressed as the number of frames in the RxFifo.

Exceptions

Exception Meaning

OverflowError The receive thread has received a new Frame, but the RxFifo has reached

its maximum capacity. The reception process enters the stop state as if
RxFifo::Stop() has been called.

To recover from this error, it is recommended to clear the RxFifo and restart

reception from scratch.

Remarks

• The receive thread is unable to throw exceptions directly to the user application. As a result,
RxFifo::GetFifoLoad() serves as a means to communicate such exceptions to the user application.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

55

RxFifo::GetMaxSize
Retrieves the maximum number of frames that the RxFifo can store.

int GetMaxSize() const;

Parameters
None.

Return Value
The maximum size of the RxFifo, expressed as the number of frames it can hold.

Remarks
• Frames in the RxFifo are dynamically allocated up to a maximum limit set with SetMaxSize(). The default

RxFifo size is 4 frames.

• If a frame is received but cannot be written to the FIFO due to its maximum size being reached, the frame
will be dropped and the NumFramesFifoFull statistic will be incremented by 1.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

56

RxFifo::GetSharedBufferSize
Gets the current size of the shared buffer (in bytes) used to pass data from the NIC to the RxFifo.

int GetSharedBufferSize() const;

Parameters
None.

Return Value
The current size of the shared buffer expressed in bytes.

Remarks
• The shared buffer is an intermediate buffer used to transfer data from the NIC to the RxFifo. For hardware

pipes, this buffer is a DMA buffer. For software pipes, it’s a buffer shared between the AvFifo implementation
and the driver.

• The default size of the shared buffer depends on the configured media format.
• Increasing the size of the shared buffer allows for greater task-scheduling jitter tolerance for the thread re-

sponsible for reading from the shared buffer.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

57

RxFifo::GetStatistics
Retrieves the receive statistics.

RxStatistics GetStatistics() const;

Parameters
None.

Return Value
Returns an RxStatistics struct.

Remarks
• All statistics will be reset when the Start function is called.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

58

RxFifo::Read
Reads a frame from the RxFifo. Users must verify that the RxFifo is not empty prior to invoking this method.

Frame* Read();

Parameters

Return Value
A pointer to a Frame containing the received frame.

Exceptions

Exception Generated when

UsageError • RxFifo empty.

Remarks
• Prior to reading from RxFifo, users should call the RxFifo::GetFifoLoad() method to ensure that at least

one frame is available.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

59

RxFifo::ReturnToMemPool
Returns a Frame to the Frame Memory Pool once the user has completed processing a frame that was read from
the RxFifo. The memory pool is a pre-allocated space designed to store frames, minimizing the overhead
associated with frequent memory allocation and deallocation of individual frames.

void ReturnToMemPool

(

 Frame* Frame // Frame to be returned to the memory pool.

);

Parameters

Timeout

Pointer to the Frame to be returned to the memory pool.

Return Value
None.

Remarks
• Call this function after processing a frame to avoid memory leaks.

• Assumes the frame is no longer needed and can be reclaimed.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

60

RxFifo::SetIpPars
Pre-configures the IP parameters for receiving a stream. Please note that these parameters are only checked
and applied when the RxFifo::Start() function is invoked.

void SetIpPars

(

 const IpPars& Pars // IP configuration parameters.

);

Parameters

Pars

IP parameters to be used for receiving the stream.

Return Value
None.

Exceptions

Exception Meaning

UsageError This exception is thrown under the following conditions:
• If the RxFifo is not currently attached to the hardware.

• If the RxFifo is already started.

Remarks
• This function requires that the RxFifo is attached to a device.

• IP parameters cannot be changed if the RxFifo is already started.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

61

RxFifo::SetMaxSize
Sets the maximum number of frames that the RxFifo can store.

void SetMaxSize

(

 int Size // New maximum FIFO size in number of frames.

);

Parameters

Size

The new maximum size of the RxFifo, expressed as the number of frames it can hold.

Return Value
None.

Exceptions

Exception Meaning

UsageError The RxFifo size cannot be changed once it is started.

Remarks
• Frames in the RxFifo are dynamically allocated up to a maximum limit set with this function. The default

RxFifo size is 4 frames.

• If a frame is received but cannot be written to the RxFifo due to its maximum size being reached, the frame
will be dropped and the NumFramesFifoFull statistic will be incremented by 1.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

62

RxFifo::SetSharedBufferSize
Sets the size of the shared buffer (in bytes) used to pass data from the NIC to the RxFifo. The size of the shared
buffer can only be changed if the RxFifo is not started.

int SetSharedBufferSize

(

 int Size // New shared buffer size in bytes.

);

Parameters

Size

The new size of the shared buffer, expressed in bytes. The size must be a multiple of the page size (4096).

Return Value
None.

Exceptions

Exception Meaning

UsageError The shared buffer size cannot be changed if the RxFifo is already started.

Remarks
• The shared buffer is an intermediate buffer used to transfer data from the NIC to the RxFifo. For hardware

pipes, this buffer is a DMA buffer. For software pipes, it’s a buffer shared between the AvFifo implementation
and the driver.

• The default size of the shared buffer depends on the media format.
• Increasing the size of the shared buffer allows for greater task-scheduling jitter tolerance for the thread re-

sponsible for reading from the shared buffer.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

63

RxFifo::Start
Starts the receiving of frames in the RxFifo and resets the receive statistics. Before starting, this function performs
a series of checks: verifies whether a hardware pipe is available (if one was requested), ensures the IP parameters
are valid, and ascertains that the Rx FIFO is properly configured. In case of an error, it throws an exception for
fatal errors trigger and returns false for non-fatal ones.

bool Start();

Parameters
None.

Return Value
Returns a boolean indicating the success or failure of starting the RxFifo.
If false is returned, use GetStatus() to identify the reason for the failure to start.

Exceptions

Exception Meaning

DriverError A fatal error occurred while accessing the DtPcie PCIe device driver or the
DtaNw network driver. The cause may vary greatly. Refer to the what()

string for an explanation of the failure.

HardwarePipeUnavailable Thrown when ForceHwPipe was specified in RxFifo::Attach(), but no

hardware pipe is currently available.

NetworkError A network related error occurred, such as the network link being down or a
failure to resolve the destination MAC address.

UsageError This exception is thrown under any of the following conditions:
• If the RxFifo is not currently attached to the hardware.

• If the RxFifo is already started.

• If the RxFifo is not configured with one of the Configure functions.

• If the IP parameters have not been set.

Remarks

Ensure that Configure() (any of the overloads) and SetIpPars() have been executed before calling this func-
tion.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

64

RxFifo::Stop
Stops receiving frames in the RxFifo.

void Start();

Parameters
None.

Return Value
None.

Remarks

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

65

RxFifo::UsesHwPipe
Indicates whether a hardware pipe (true) or software pipe (false) is used for receiving SMPTE 2110 or
SMPTE 2022 frames. Hardware pipes are assigned when the RxFifo started, taking into account the
HwOrSwPipe preference specified in the RxFifo::Attach() call and the count of already allocated hardware
transmit pipes. Hence, this method can only be employed after the RxFifo has been started.

bool UsesHwPipe() const;

Parameters
None.

Return Value
A boolean value indicating whether a hardware pipe (true) or software pipe (false) is used.

Exceptions

Exception Meaning

UsageError The pipe type cannot be determined because the RxFifo is not started yet.

Remarks

This function is useful for identifying which type of pipe is used by the RxFifo and can help with optimizing
performance. Hardware pipes get their own DMA controller and therefore have significantly higher performance
than software pipes. However, hardware pipes are in limited supply.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

66

 TxFifo (namespace Dtapi::AvFifo)

TxFifo::Attach
Attaches a Transmit FIFO to a specified DekTec device and port.

void Attach

(

 const DtDevice& Device, // DekTec device to attach to.

 int Port, // Port number (1-based) to attach to.

 HwOrSwPipe Pref=Auto // Prefer hardware or software pipe?

);

Parameters

Device

Specifies the DekTec device to attach the Transmit FIFO to. The device must be attached to the hardware,
otherwise attaching the Transmit FIFO will fail.

Port

Specifies the device’s port number (1-based) to attach the Transmit FIFO to.

Pref

Indicates the user's preference for a hardware or software pipe.

Value Meaning

HwOrSwPipe::Auto DTAPI chooses a suitable pipe type.

HwOrSwPipe::HwOrSwPipe Force hardware pipe, throw an exception if none is available.

HwOrSwPipe::PreferHwPipe Prefer hardware pipe, but accept software pipe as a second choice.

HwOrSwPipe::UseSwPipe Use software pipe.

Return Value
None.

Exceptions

Exception Meaning

UsageError Attaching the TxFifo to the device object will fail if the device object is not at-
tached to the hardware.

DriverError A fatal error occurred while accessing the DtPcie PCIe device driver or the
DtaNw network driver.

Remarks

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

67

TxFifo::Clear
Empties the Transmit FIFO and the Frame Memory Pool, releasing all memory resources associated with the
Transmit FIFO.

void Clear();

Parameters
None.

Return Value
None.

Exceptions

Exception Meaning

UsageError The FIFO cannot be cleared once the Transmit FIFO is started with
TxFifo::Start().

Remarks

The TxFifo::Clear() function cannot be called to clear the Transmit FIFO if it has already been started using
TxFifo::Start().

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

68

TxFifo::Configure
A set of overloaded functions used to configure the Transmit FIFO. The appropriate function overload is called
depending on the configuration parameter type provided.

// SMPTE 2022-5/6

void Configure

(

 const St2022::TxConfigVideo& Config, // SMPTE 2022 configuration.

 BlobMetadata& Metadata // Frame BLOB alignment metadata.

);

// SMPTE 2110

void Configure

(

 const St2110::TxConfigAudio& Config // SMPTE 2110 audio configuration.

 BlobMetadata& Metadata // Frame BLOB alignment metadata.

);

void Configure

(

 const St2110::TxConfigRaw& Config // Any SMPTE 2110 substandard.

 BlobMetadata& Metadata // Frame BLOB alignment metadata.

);

void Configure

(

 const St2110::TxConfigRawVideo& Config // SMPTE 2110 raw video configuration.

 BlobMetadata& Metadata // Frame BLOB alignment metadata.

);

void Configure

(

 const St2110::TxConfigVideo& Config // SMPTE 2110 video configuration.

 BlobMetadata& Metadata // Frame BLOB alignment metadata.

);

Parameters

Config

Represents the configuration parameters. The specific parameter type determines which function overload
is called.

Metadata

Metadata that governs the alignment and number of extra bytes allocated when a new frame BLOB must
be allocated.

Return Value
None.

Exceptions

Exception Meaning

UsageError Configuring the Transmit FIFO requires that the TxFifo object is attached to
the hardware and not started yet.

Remarks
• The Transmit FIFO must be configured before starting it with the TxFifo::Start() method.

• Configuring the Transmit FIFO also clears it.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

69

TxFifo::Detach
Detaches a Transmit FIFO from the hardware. Releases all related resources, including the Frame Memory Pool
associated with the TxFifo object.

void Detach();

Parameters

Return Value
None.

Remarks

All resources related to the Transmit FIFO are released.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

70

TxFifo::GetFifoLoad
Retrieves the current number of frames in the TxFifo.

If the TxFifo has been started, this method also checks if the packet scheduler in the transmit thread has
detected any invalid transmit timestamps. If an invalid timestamp is detected, a SchedulingError is thrown.

int GetFifoLoad() const;

Parameters

Return Value
The current FIFO load, expressed as the number of frames in the TxFifo.

Exceptions

Exception Meaning

SchedulingError The scheduler in the transmit thread has encountered an invalid timestamp
that is too far in the future or the past, causing the transmission to enter the
stop state as if TxFifo::Stop() has been called.

To recover from this error, it is recommended to clear the TxFifo and restart

the transmission loop from scratch.

Remarks
• The transmit thread is unable to throw exceptions directly to the user application. As a result,

TxFifo::GetFifoLoad() serves as a means to communicate such exceptions to the user application.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

71

TxFifo::GetFrameFromMemPool
Retrieves a Frame of the requested size from the memory pool, with the intention of filling the Frame with data
for transmission and writing the Frame to the Transmit FIFO.

Frame* GetFrameFromMemPool

(

 size_t Size // Requested size of the embedded frame BLOB.

);

Parameters

Return Value
A pointer to a Frame in the Frame Memory Pool.

Exceptions

Exception Meaning

std::bad_alloc Insufficient memory to allocate a frame.

Remarks
• To write a frame, the application must first obtain a Frame (struct Frame with embedded memory for storing

frame data) from the memory pool.

• The memory pool manages available Frames. If a Frame is available and can be recycled, its size is checked
to ensure it can accommodate the requested frame size. If the available frame BLOB in the frame is too
small, it is resized; if too large, it remains unchanged.

• If no frames are available in the memory pool, a new frame is dynamically allocated.
• After the application writes the frame to the TxFifo, DTAPI returns the Frame to the memory pool once the

data is transmitted.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

72

TxFifo::GetMaxSize
Retrieves the maximum number of frames that the Transmit FIFO can store.

int GetMaxSize() const;

Parameters
None.

Return Value
The maximum size of the Transmit FIFO, expressed as the number of frames it can hold.

Remarks

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

73

TxFifo::GetSharedBufferSize
Gets the current size of the shared buffer (in bytes) used to pass data from the TxFifo to the NIC.

int GetSharedBufferSize() const;

Parameters
None.

Return Value
The current size of the shared buffer, expressed in bytes.

Remarks
• The shared buffer is an intermediate buffer used to transfer data from the TxFifo to the NIC. For hardware

pipes, this buffer is a DMA buffer. For software pipes, it’s a buffer shared between the AvFifo implementation
and the driver.

• The default size of the shared buffer depends on the configured media format.
• Increasing the size of the shared buffer allows for greater task-scheduling jitter tolerance for the thread re-

sponsible for writing to the shared buffer.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

74

TxFifo::GetStatistics
Retrieves the receive statistics.

TxStatistics GetStatistics() const;

Parameters
None.

Return Value
Transmit statistics as a structure containing several counter values:

Remarks
• All statistics will be reset when the Start function is called.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

75

TxFifo::GetStatus
Retrieves the status of the TxFifo’s IP connection.

FifoStatus GetStatus() const;

Parameters
None.

Return Value
Returns a FifoStatus enumeration.

Remarks

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

76

TxFifo::SetIpPars
Configures the IP parameters to be used for transmitting a stream.

void SetIpPars

(

 const IpPars& Pars // IP configuration parameters.

);

Parameters

Pars

IP parameters to be used for transmitting the stream.

Return Value
None.

Exceptions

Exception Meaning

UsageError The IP parameters cannot be set if:
 - the Transmit FIFO is not attached to the hardware;
 - the Transmit FIFO is already started.

std::invalid_argument One of the IpPars fields is outside its valid range. The what() string will indi-
cate which field value is invalid.

Remarks
• This function requires that the Transmit FIFO is attached to a device.

• IP parameters cannot be changed if the Transmit FIFO is already started.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

77

TxFifo::SetMaxSize
Sets the maximum number of frames that the Transmit FIFO can store.

void SetMaxSize

(

 int Size // New maximum FIFO size in number of frames.

);

Parameters

Size

The new maximum size of the Transmit FIFO, expressed as the number of frames it can hold.

Return Value
None.

Exceptions

Exception Meaning

UsageError The Transmit FIFO size cannot be changed once it is started.

Remarks

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

78

TxFifo::SetSharedBufferSize
Sets the size of the shared buffer (in bytes) used to pass data from the TxFifo to the NIC. The size of the shared
buffer can only be changed if the TxFifo is not started.

void SetSharedBufferSize

(

 int Size // New shared buffer size in bytes.

);

Parameters

Size

The new size of the shared buffer, expressed in bytes. The size must be a multiple of the page size (4096).

Return Value
None.

Exceptions

Exception Meaning

UsageError The shared buffer size cannot be changed if the TxFifo is already started.

Remarks
• The shared buffer is an intermediate buffer used to transfer data from the TxFifo to the NIC. For hardware

pipes, this buffer is a DMA buffer. For software pipes, it’s a buffer shared between the AvFifo implementation
and the driver.

• The default size of the shared buffer depends on the media format.
• Increasing the size of the shared buffer allows for greater task-scheduling jitter tolerance for the thread re-

sponsible for writing to the shared buffer.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

79

TxFifo::Start
Starts transmitting frames in the Transmit FIFO.

void Start();

Parameters
None.

Return Value
None.

Exceptions

Exception Meaning

DriverError A fatal error occurred while accessing the DtPcie PCIe device driver or the
DtaNw network driver.

NetworkError A network related error occurred, e.g. the network link is down or resolving
the destination MAC address failed.

UsageError Frame transmission cannot be started if:
 - the Transmit FIFO is not attached to the hardware;
 - the Transmit FIFO is not configured;
 - IP parameters have not been configured.

Remarks

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

80

TxFifo::Stop
Stops transmitting frames.

void Stop();

Parameters
None.

Return Value
None.

Remarks

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

81

TxFifo::UsesHwPipe
Indicates whether a hardware pipe (true) or software pipe (false) is used for transmitting SMPTE 2110 or
SMPTE 2022 frames. Hardware pipes are assigned when the TxFifo started, taking into account the
HwOrSwPipe preference specified in the TxFifo::Attach() call and the count of already allocated hardware
transmit pipes. Hence, this method can only be employed after the TxFifo has been started.

bool UsesHwPipe() const;

Parameters
None.

Return Value
A boolean value indicating whether a hardware pipe (true) or software pipe (false) is used.

Exceptions

Exception Meaning

UsageError The pipe type cannot be determined because the TxFifo is not started yet.

Remarks

This function is useful for identifying which type of pipe is used by the TxFifo and can help with optimizing
performance. Hardware pipes get their own DMA controller and therefore have significantly higher performance
than software pipes. However, hardware pipes are in limited supply.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

82

TxFifo::Write
Writes a frame to the Transmit FIFO.

void Write

(

 Frame* Frame // Unit of audio/video/ancillary data.

);

Parameters

Frame

Frame to be stored in the Transmit FIFO for transmission.

Return Value
None.

Remarks

The user must obtain a Frame by calling TxFifo::GetFrameFromMemPool().

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

83

 Helper Functions (namespace Dtapi::AvFifo)

FifoStatusToMessage
Converts a FifoStatus enumeration value to a readable string message.

string FifoStatusToMessage

(

 FifoStatus Status // Status code to be converted to a message.

)

Parameters

Status

The FifoStatus enumeration value to be converted into a message.

Return Value

string

A brief message describing the corresponding link status.

Remarks
• The FifoStatusToMessage function provides a mechanism to translate the FifoStatus enumeration values

into human-readable messages, aiding in the debugging and understanding of the link status. Always check
the returned message to understand the status of the IP link in your network operation.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

84

St2022::Tod2Rtp
Converts a time-of-day value to the corresponding RTP timestamp for a SMPTE 2022-5/6 (SDI over IP) stream.

uint32_t Tod2Rtp

(

 DtTimeOfDay ToD // Time-of-day value to be converted.

)

Parameters

ToD

Time-of-day value to be converted to an RTP timestamp.

Return Value

uint32_t

The RTP timestamp corresponding to the time-of-day value.

Remark

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

85

St2110::Rtp2Tod_Audio
Converts an RTP timestamp to a time-of-day value for audio. The calculated time-of-day will align with the audio
media grid for the specified sample rate, provided that the given RTP timestamp is also grid-aligned.

DtTimeOfDay Rtp2Tod_Audio

(

 uint32_t RtpTime, // Timestamp in RTP header.

 DtTimeOfDay ApproxToD, // Approximate time of day.

 int SampleRate // Audio sample rate in Hz.

)

Parameters

RtpTime

Timestamp retrieved from the RTP header, in 90kHz units.

ApproxToD

Specifies the approximate time of day, which helps the function determine the time window containing
the RTP timestamp. The approximate time of day does not need to be accurate, even a deviation of plus
or minus one day is sufficient.

SampleRate

Specifies the audio sample rate expressed in Hertz (Hz).

Return Value

DtTimeOfDay

The time-of-day value corresponding to the RTP timestamp.

Remarks

Typically, the current time of day can be used for ApproxTod.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

86

St2110::Rtp2Tod_Video
Converts an RTP timestamp to a time-of-day value for video. The calculated time-of-day will align with the video
media grid, provided that the given RTP timestamp is also grid-aligned.

DtTimeOfDay Rtp2Tod_Video

(

 uint32_t RtpTime, // Timestamp in RTP header.

 DtTimeOfDay ApproxToD // Approximate time of day.

)

Parameters

RtpTime

Timestamp retrieved from the RTP header, in 90kHz units.

ApproxToD

Specifies the approximate time of day, which helps the function determine the time window containing
the RTP timestamp. The approximate time of day does not need to be accurate, even a deviation of plus
or minus one day is sufficient.

Return Value

DtTimeOfDay

The time-of-day value corresponding to the RTP timestamp.

Remarks

Typically, the current time of day can be used for ApproxTod.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

87

St2110::Tod2Rtp_Audio
Converts a time-of-day value to the corresponding RTP timestamp for audio. If the specified time-of-day value
is aligned to the audio media grid for the given sample rate, then the calculated RTP timestamp is guaranteed
to be aligned as well.

uint32_t Tod2Rtp_Audio

(

 DtTimeOfDay ToD // Time-of-day value to be converted.

 int SampleRate // Audio sample rate in Hz.

)

Parameters

ToD

Time-of-day value to be converted to an RTP timestamp.

SampleRate

Specifies the audio sample rate expressed in Hertz (Hz).

Return Value

uint32_t

The RTP timestamp corresponding to the time-of-day value.

Remarks

If the input time-of-day value is not grid-aligned, the function will make a reasonable rounding attempt to
determine the closest RTP timestamp, taking into account complexities arising from fractional video frame rates.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

88

St2110::Tod2Rtp_Video
Converts a time-of-day value to the corresponding RTP timestamp for video. If the specified time-of-day value is
aligned to the video media grid, then the calculated RTP timestamp is guaranteed to be aligned as well.

uint32_t Tod2Rtp_Video

(

 DtTimeOfDay ToD // Time-of-day value to be converted.

)

Parameters

ToD

Time-of-day value to be converted to an RTP timestamp.

Return Value

uint32_t

The RTP timestamp corresponding to the time-of-day value.

Remarks

If the input time-of-day value is not grid-aligned, the function will make a reasonable rounding attempt to
determine the closest RTP timestamp, taking into account complexities arising from fractional video frame rates.

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

89

Tod2Grid_Audio
Aligns a specified time-of-day value with the media grid for audio.

DtTimeOfDay Tod2Grid_Audio

(

 DtTimeOfDay ToD, // Time of day to be aligned.

 int SampleRate // Audio sample rate in Hz.

)

Parameters

ToD

Time of day to be aligned to the audio media clock grid.

SampleRate

Specifies the audio sample rate expressed in Hertz (Hz).

Return Value

DtTimeOfDay

The nearest media-grid aligned time-of-day value corresponding to the input parameters.

Remarks

DTAPI – Audio/Video FIFO Interface (AvFifo)
Reference Manual

90

Tod2Grid_Video
Aligns a specified time-of-day value with the media grid for video.

DtTimeOfDay Tod2Grid_Video

(

 DtTimeOfDay ToD, // Time of day to be aligned.

 FrameRate Rate; // Frame rate; field rate for Interlaced/PsF.

)

Parameters

ToD

Time of day to be aligned to the audio media clock grid.

Rate

Specifies the frame rate for progressive scanning modes, or the field rate for interlaced or PsF scanning
mode.

Return Value

DtTimeOfDay

The nearest media-clock grid aligned time-of-day value corresponding to the input parameters.

Remarks

In SMPTE 2110, timestamps are calculated relative to the starting point of the PTP timescale, denoted as T0. This
function computes the number of frames that have occurred since T0 for a given time-of-day value (also referred
to as PTP time), considering the specified frame rate. The function then returns the time-of-day corresponding
to the nearest start-of-frame time point.

Providing an exact frame rate is crucial for accurate computation, which is why the frame rate is specified as an
exact rational number.

	1. Introduction
	1.1. What is the AvFifo Interface?
	1.2. The FIFO-Based Interfacing Model
	1.3. Timing Model
	1.3.1. PTP Agent
	1.3.2. Configuring the PTP Agent in Windows
	1.3.3. Configuring the PTP Agent in Linux

	1.4. AvFifo Code Examples

	2. Tutorial
	2.1. Introduction
	2.2. Basic Receive Example
	2.2.1. Step 1: Attach to the Hardware
	2.2.2. Step 2: Initialize Receive FIFO
	2.2.3. Step 3. Start the Receive FIFO
	2.2.4. Step 4. Main Loop.
	2.2.5. Step 5. Read and Process Frame
	2.2.6. Step 6. Clean Up

	2.3. Basic Transmit Example
	2.3.1. Step 1: Attach to the Hardware
	2.3.2. Step 2: Initialize Transmit FIFO
	2.3.3. Step 3. Initialize Time-of-Day
	2.3.4. Step 4. Start the TxFifo
	2.3.5. Step 5. Main Loop.
	2.3.6. Step 6. Check for Sufficient Space
	2.3.7. Step 7. Compute Timestamp
	2.3.8. Step 8. Assemble a Frame
	2.3.9. Step 9. Write Frame to TxFifo
	2.3.10. Step 10. Advance Time-of-Day
	2.3.11. Step 11. Clean Up.

	3. AvFifo Concepts
	3.1. Frame Memory Pool
	3.2. Exceptions in AvFifo
	3.2.1. General Philosophy
	3.2.2. Exception Categories

	3.3. Using Raw Mode
	3.3.1. Network Byte Order
	3.3.2. Processing IP Packets in Network Byte Order with a Little-Endian CPU
	3.3.3. Example – Receiving SMPTE 2110-40 in Raw Mode
	3.3.4. Using Bit Fields

	Enumerations (namespace Dtapi::AvFifo)
	enum class FifoStatus
	enum class HwOrSwPipe
	enum IpProtocolVersion
	enum IpTransportProtocol
	enum RxFifoOverflowStrategy
	enum St2022::FecMode
	enum St2022::LinkMode
	enum St2110::AudioFormat
	enum St2110::PackingMode
	enum St2110::RxFrameFormat
	enum St2110::Scheduling
	enum St2110::TxFrameFormat
	enum St2110::VideoScanning

	Exceptions (namespace Dtapi::AvFifo)
	Exceptions

	Structs (namespace Dtapi::AvFifo)
	struct BlobMetadata
	struct ExactRatio
	struct IpPars
	struct IpSrcFilt
	struct RxStatistics
	struct TxStatistics
	struct VideoSize
	struct YuvPlanes
	struct St2022::RxConfig
	struct St2022::TxConfig
	struct St2110::RxConfigAudio
	struct St2110::RxConfigRaw
	struct St2110::RxConfigVideo
	struct St2110::TxConfigAudio
	struct St2110::TxConfigRaw
	struct St2110::TxConfigRawVideo
	struct St2110::TxConfigVideo
	struct St2110::VideoPacking
	struct St2110::VideoTiming

	Frame (namespace Dtapi::AvFifo)
	Frame public members
	Frame::Yuv422P_8b_GetPlanes

	RxFifo (namespace Dtapi::AvFifo)
	RxFifo::Attach
	RxFifo::Clear
	RxFifo::Configure
	RxFifo::Detach
	RxFifo::GetFifoLoad
	RxFifo::GetMaxSize
	RxFifo::GetSharedBufferSize
	RxFifo::GetStatistics
	RxFifo::Read
	RxFifo::ReturnToMemPool
	RxFifo::SetIpPars
	RxFifo::SetMaxSize
	RxFifo::SetSharedBufferSize
	RxFifo::Start
	RxFifo::Stop
	RxFifo::UsesHwPipe

	TxFifo (namespace Dtapi::AvFifo)
	TxFifo::Attach
	TxFifo::Clear
	TxFifo::Configure
	TxFifo::Detach
	TxFifo::GetFifoLoad
	TxFifo::GetFrameFromMemPool
	TxFifo::GetMaxSize
	TxFifo::GetSharedBufferSize
	TxFifo::GetStatistics
	TxFifo::GetStatus
	TxFifo::SetIpPars
	TxFifo::SetMaxSize
	TxFifo::SetSharedBufferSize
	TxFifo::Start
	TxFifo::Stop
	TxFifo::UsesHwPipe
	TxFifo::Write

	Helper Functions (namespace Dtapi::AvFifo)
	FifoStatusToMessage
	St2022::Tod2Rtp
	St2110::Rtp2Tod_Audio
	St2110::Rtp2Tod_Video
	St2110::Tod2Rtp_Audio
	St2110::Tod2Rtp_Video
	Tod2Grid_Audio
	Tod2Grid_Video

